ﻻ يوجد ملخص باللغة العربية
In this talk we report on our study of two-colour lattice QCD with N_f=4 staggered fermion degrees of freedom with equal electric charge q in a homogeneous magnetic field B at non-zero temperature T. We find indications for a non-monotonic behaviour of the critical temperature as a function of the magnetic field strength and, as a consequence, for the occurence of `inverse magnetic catalysis within the transition region for magnetic fields in the range 0 < qB < 0.7 GeV^2.
A status of lattice QCD thermodynamics, as of 2013, is summarized. Only bulk thermodynamics is considered. There is a separate section on magnetic fields.
We delineate equilibrium phase structure and topological charge distribution of dense two-colour QCD at low temperature by using a lattice simulation with two-flavour Wilson fermions that has a chemical potential $mu$ and a diquark source $j$ incorpo
We present results on the QCD equation of state, obtained with two different improved dynamical staggered fermion actions and almost physical quark masses. Lattice cut-off effects are discussed in detail as results for three different lattice spacing
We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon ($B$), strangeness ($S$), electric charge ($Q$), and isospin ($I$) chemical potentials $mu_{X=B,Q,S,I}$. The results were obtained usin
In this contribution we revisit simulations of two-color QCD with rooted staggered quarks at finite density, where baryon-number spontaneously breaks and a diquark condensate forms. We thereby pay special attention to simulating outside the lattice-a