ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Origin of Young Stars at the Galactic Center

232   0   0.0 ( 0 )
 نشر من قبل Ann-Marie Madigan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The center of our galaxy is home to a massive black hole, SgrA*, and a nuclear star cluster containing stellar populations of various ages. While the late type stars may be too old to have retained memory of their initial orbital configuration, and hence formation mechanism, the kinematics of the early type stars should reflect their original distribution. In this contribution we present a new statistic which uses directly-observable kinematical stellar data to infer orbital parameters for stellar populations, and is capable of distinguishing between different origin scenarios. We use it on a population of B-stars in the Galactic center that extends out to large radii (0.5 pc) from the massive black hole. We find that the high K-magnitude population form an eccentric distribution, suggestive of a Hills binary-disruption origin.



قيم البحث

اقرأ أيضاً

We present a new directly-observable statistic which uses sky position and proper motion of stars near the Galactic center massive black hole to identify populations with high orbital eccentricities. It is most useful for stars with large orbital per iods for which dynamical accelerations are difficult to determine. We apply this statistic to a data set of B-stars with projected radii 0.1 < p < 25 (~0.004 - 1 pc) from the massive black hole in the Galactic center. We compare the results with those from N-body simulations to distinguish between scenarios for their formation. We find that the scenarios favored by the data correlate strongly with particular K-magnitude intervals, corresponding to different zero-age main-sequence (MS) masses and lifetimes. Stars with 14 < mK < 15 (15 - 20 solar masses, t_{MS} = 8-13 Myr) match well to a disk formation origin, while those with mK > 15 (<15 solar masses, t_{MS} >13 Myr), if isotropically distributed, form a population that is more eccentric than thermal, which suggests a Hills binary-disruption origin.
Within a half-parsec from the Galactic center (GC), there is a population of coeval young stars which appear to reside in a coherent disk. Surrounding this dynamically-cool stellar system, there is a population of stars with a similar age and much la rger eccentricities and inclinations relative to the disk. We propose a hypothesis for the origin of this dynamical dichotomy. Without specifying any specific mechanism, we consider the possibility that both stellar populations were formed within a disk some 6 Myr ago. But this orderly structure was dynamically perturbed outside-in by an intruding object with a mass ~10^4 Msun, which may be an intermediate-mass black hole (IMBH) or a dark stellar cluster hosting an IMBH. We suggest that the perturber migrated inward to ~0.15-0.3pc from the GC under the action of dynamical friction. Along the way, it captured many stars in the outer disk region into its mean-motion resonance, forced them to migrate with it, closely encountered with them, and induced the growth of their eccentricity and inclination. But stars in the inner regions of the disk retain their initial coplanar structure. We predict that some of the inclined and eccentric stars surrounding the disk may have similar Galactocentric semimajor axis. Future precision determination of their kinematic distribution of these stars will not only provide a test for this hypothesis but also evidences for the presence of an IMBH or a dark cluster at the immediate proximity of the massive black hole at the GC. (abridged)
We present new kinematic measurements and modeling of a sample of 116 young stars in the central parsec of the Galaxy in order to investigate the properties of the young stellar disk. The measurements were derived from a combination of speckle and la ser guide star adaptive optics imaging and integral field spectroscopy from the Keck telescopes. Compared to earlier disk studies, the most important kinematic measurement improvement is in the precision of the accelerations in the plane of the sky, which have a factor of six smaller uncertainties (~10 uas/yr/yr). We have also added the first radial velocity measurements for 8 young stars, increasing the sample at the largest radii (6-12) by 25%. We derive the ensemble properties of the observed stars using Monte-Carlo simulations of mock data. There is one highly significant kinematic feature (~20 sigma), corresponding to the well-known clockwise disk, and no significant feature is detected at the location of the previously claimed counterclockwise disk. The true disk fraction is estimated to be ~20%, a factor of ~2.5 lower than previous claims, suggesting that we may be observing the remnant of what used to be a more densely populated stellar disk. The similarity in the kinematic properties of the B stars and the O/WR stars suggests a common star formation event. The intrinsic eccentricity distribution of the disk stars is unimodal, with an average value of <e> = 0.27 +/- 0.07, which we show can be achieved through dynamical relaxation in an initially circular disk with a moderately top-heavy mass function.
91 - Warren R. Brown 2018
We use new Gaia measurements to explore the origin of the highest velocity stars in the Hypervelocity Star Survey. The measurements reveal a clear pattern in the B-type stars. Halo stars dominate the sample at speeds about 100 km/s below Galactic esc ape velocity. Disk runaway stars have speeds up to 100 km/s above Galactic escape velocity, but most disk runaways are bound. Stars with speeds about 100 km/s above Galactic escape velocity originate from the Galactic center. Two bound stars may also originate from the Galactic center. Future Gaia measurements will enable a large, clean sample of Galactic center ejections for measuring the massive black hole ejection rate of hypervelocity stars, and for constraining the mass distribution of the Milky Way dark matter halo.
Over the last 15 years, around a hundred very young stars have been observed in the central parsec of our Galaxy. While the presence of young stars forming one or two stellar disks at approx. 0.1 pc from the supermassive black hole (SMBH) can be unde rstood through star formation in accretion disks, the origin of the S stars observed a factor of 10 closer to the SMBH has remained a major puzzle. Here we show the S stars to be a natural consequence of dynamical interaction of two stellar disks at larger radii. Due to precession and Kozai interaction, individual stars achieve extremely high eccentricities at random orientation. Stellar binaries on such eccentric orbits are disrupted due to close passages near the SMBH, leaving behind a single S star on a much tighter orbit. The remaining star may be ejected from the vicinity of the SMBH, thus simultaneously providing an explanation for the observed hypervelocity stars in the Milky Way halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا