ﻻ يوجد ملخص باللغة العربية
The critical curves of the q-state Potts model can be determined exactly for regular two-dimensional lattices G that are of the three-terminal type. Jacobsen and Scullard have defined a graph polynomial P_B(q,v) that gives access to the critical manifold for general lattices. It depends on a finite repeating part of the lattice, called the basis B, and its real roots in the temperature variable v = e^K - 1 provide increasingly accurate approximations to the critical manifolds upon increasing the size of B. These authors computed P_B(q,v) for large bases (up to 243 edges), obtaining determinations of the ferromagnetic critical point v_c > 0 for the (4,8^2), kagome, and (3,12^2) lattices to a precision (of the order 10^{-8}) slightly superior to that of the best available Monte Carlo simulations. In this paper we describe a more efficient transfer matrix approach to the computation of P_B(q,v) that relies on a formulation within the periodic Temperley-Lieb algebra. This makes possible computations for substantially larger bases (up to 882 edges), and the precision on v_c is hence taken to the range 10^{-13}. We further show that a large variety of regular lattices can be cast in a form suitable for this approach. This includes all Archimedean lattices, their duals and their medials. For all these lattices we tabulate high-precision estimates of the bond percolation thresholds p_c and Potts critical points v_c. We also trace and discuss the full Potts critical manifold in the (q,v) plane, paying special attention to the antiferromagnetic region v < 0. Finally, we adapt the technique to site percolation as well, and compute the polynomials P_B(p) for certain Archimedean and dual lattices (those having only cubic and quartic vertices), using very large bases (up to 243 vertices). This produces the site percolation thresholds p_c to a precision of the order 10^{-9}.
Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic c
We consider the Potts model and the related bond, site, and mixed site-bond percolation problems on triangular-type and kagome-type lattices, and derive closed-form expressions for the critical frontier. For triangular-type lattices the critical fron
The two-dimensional Potts model can be studied either in terms of the original Q-component spins, or in the geometrical reformulation via Fortuin-Kasteleyn (FK) clusters. While the FK representation makes sense for arbitrary real values of Q by const
In previous work with Scullard, we defined a graph polynomial P_B(q,T) that gives access to the critical temperature T_c of the q-state Potts model on a general two-dimensional lattice L. It depends on a basis B, containing n x m unit cells of L, and
In the paper random-site percolation thresholds for simple cubic lattice with sites neighborhoods containing next-next-next-nearest neighbors (4NN) are evaluated with Monte Carlo simulations. A recently proposed algorithm with low sampling for percol