ﻻ يوجد ملخص باللغة العربية
The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that crystallized in presence of water and volatile elements. The formation of Jupiter and probably its migration occurred in the period when eucrites crystallized, and triggered a phase of bombardment that caused icy planetesimals to cross the asteroid belt. In this work, we study the flux of icy planetesimals on Vesta during the Jovian Early Bombardment and, using hydrodynamic simulations, the outcome of their collisions with the asteroid. We explore how the migration of the giant planet would affect the delivery of water and volatile materials to the asteroid and we discuss our results in the context of the geophysical and collisional evolution of Vesta. In particular, we argue that the observational data are best reproduced if the bulk of the impactors was represented by 1-2 km wide planetesimals and if Jupiter underwent a limited (a fraction of au) displacement.
The asteroid belt is an open window on the history of the Solar System, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to th
We present the results of photometric observations carried out with four small telescopes of the asteroid 4 Vesta in the $B$, $R_{rm C}$, and $z$ bands at a minimum phase angle of 0.1 $timeform{D}$. The magnitudes, reduced to unit distance and zero p
Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes around Sun-like stars. We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet at
The Earth contains between one and ten oceans of water, including water within the mantle, where one ocean is the mass of water on the Earths surface today. With $n$-body simulations we consider how much water could have been delivered from the aster
We present the results of snapshot numerical integrations of test particles representing comet-like and asteroid-like objects in the inner solar system aimed at investigating the short-term dynamical evolution of objects close to the dynamical bounda