ﻻ يوجد ملخص باللغة العربية
We present an analysis of the HI and CO gas in conjunction with the Planck/IRAS submillimeter/far-infrared dust properties toward the most outstanding high latitude clouds MBM 53, 54, 55 and HLCG 92-35 at b = -30 deg to -45 deg. The CO emission, dust opacity at 353 GHz (tau353), and dust temperature (Td) show generally good spatial correspondence. On the other hand, the correspondence between the HI emission and the dust properties is less clear than in CO. The integrated HI intensity WHI and tau353 show a large scatter with a correlation coefficient of ~0.6 for a Td range from 16 K to 22 K. We find, however, that WHI and tau353 show better correlation for smaller ranges of Td every 0.5 K, generally with a correlation coefficient of 0.7-0.9. We set up a hypothesis that the HI gas associated with the highest Td >= 21.5 K is optically thin, whereas the HI emission is generally optically thick for Td lower than 21.5 K. We have determined a relationship for the optically thin HI gas between atomic hydrogen column density and tau353, NHI (cm-2) = (1.5 x 10^26) x tau353, under the assumption that the dust properties are uniform and we have applied this to estimate NHI from tau353 for the whole cloud. NHI was then used to solve for Ts and tauHI over the region. The result shows that the HI is dominated by optically thick gas having a low spin temperature of 20-40 K and a density of 40-160 cm-3. The HI envelope has a total mass of ~1.2 x 10^4 Msol, an order of magnitude larger than that of the CO clouds. The HI envelope properties derived by this method do not rule out a mixture of HI and H2 in the dark gas, but we present indirect evidence that most of the gas mass is in the atomic state.
Gas and dust properties in the Chamaeleon molecular cloud complex have been investigated with emission lines from atomic hydrogen (HI) and 12CO molecule, dust optical depth at 353 GHz ($tau_{353}$), and $J$-band infrared extinction ($A_{J}$). We have
Comparison analyses between the gas emission data (HI 21cm line and CO 2.6 mm line) and the Planck/IRAS dust emission data (optical depth at 353 GHz tau353 and dust temperature Td) allow us to estimate the amount and distribution of the hydrogen gas
An isolated HI cloud with peculiar properties has recently been discovered by Dedes, Dedes, & Kalberla (2008, A&A, 491, L45) with the 300-m Arecibo telescope, and subsequently imaged with the VLA. It has an angular size of ~6, and the HI emission has
Based on the accurate color excess $E_{rm G_{BP},G_{RP}}$ of more than 4 million stars and $E_{rm NUV,G_{BP}}$ of more than 1 million stars from citet{2021ApJS..254...38S}, the distance and the extinction of the molecular clouds in the MBM catalog at
A study of the interstellar medium (ISM) and cosmic rays (CRs) using Fermi Large Area Telescope (LAT) data, in a region encompassing the nearby molecular clouds MBM 53, 54, and 55 and a far-infrared loop-like structure in Pegasus, is reported. By com