ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Precoded Compute-and-Forward with Partial Feedback

109   0   0.0 ( 0 )
 نشر من قبل Amin Sakzad
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we propose phase precoding for the compute-and-forward (CoF) protocol. We derive the phase precoded computation rate and show that it is greater than the original computation rate of CoF protocol without precoder. To maximize the phase precoded computation rate, we need to jointly find the optimum phase precoding matrix and the corresponding network equation coefficients. This is a mixed integer programming problem where the optimum precoders should be obtained at the transmitters and the network equation coefficients have to be computed at the relays. To solve this problem, we introduce phase precoded CoF with partial feedback. It is a quantized precoding system where the relay jointly computes both a quasi-optimal precoder from a finite codebook and the corresponding network equations. The index of the obtained phase precoder within the codebook will then be fedback to the transmitters. A deep hole phase precoder is presented as an example of such a scheme. We further simulate our scheme with a lattice code carved out of the Gosset lattice and show that significant coding gains can be obtained in terms of equation error performance.



قيم البحث

اقرأ أيضاً

The compute-and-forward (CoF) is a relaying protocol, which uses algebraic structured codes to harness the interference and remove the noise in wireless networks. We propose the use of phase precoders at the transmitters of a network, where relays ap ply CoF strategy. We define the {em phase precoded computation rate} and show that it is greater than the original computation rate of CoF protocol. We further give a new low-complexity method for finding network equations. We finally show that the proposed precoding scheme increases the degrees-of-freedom (DoF) of CoF protocol. This overcomes the limitations on the DoF of the CoF protocol, recently presented by Niesen and Whiting. Using tools from Diophantine approximation and algebraic geometry, we prove the existence of a phase precoder that approaches the maximum DoF when the number of transmitters tends to infinity.
We present a modified compute-and-forward scheme which utilizes Channel State Information at the Transmitters (CSIT) in a natural way. The modified scheme allows different users to have different coding rates, and use CSIT to achieve larger rate regi on. This idea is applicable to all systems which use the compute-and-forward technique and can be arbitrarily better than the regular scheme in some settings.
Compute-and-Forward is an emerging technique to deal with interference. It allows the receiver to decode a suitably chosen integer linear combination of the transmitted messages. The integer coefficients should be adapted to the channel fading state. Optimizing these coefficients is a Shortest Lattice Vector (SLV) problem. In general, the SLV problem is known to be prohibitively complex. In this paper, we show that the particular SLV instance resulting from the Compute-and-Forward problem can be solved in low polynomial complexity and give an explicit deterministic algorithm that is guaranteed to find the optimal solution.
Lattice codes used under the Compute-and-Forward paradigm suggest an alternative strategy for the standard Gaussian multiple-access channel (MAC): The receiver successively decodes integer linear combinations of the messages until it can invert and r ecover all messages. In this paper, a multiple-access technique called CFMA (Compute-Forward Multiple Access) is proposed and analyzed. For the two-user MAC, it is shown that without time-sharing, the entire capacity region can be attained using CFMA with a single-user decoder as soon as the signal-to-noise ratios are above $1+sqrt{2}$. A partial analysis is given for more than two users. Lastly the strategy is extended to the so-called dirty MAC where two interfering signals are known non-causally to the two transmitters in a distributed fashion. Our scheme extends the previously known results and gives new achievable rate regions.
In a recent work, Nazer and Gastpar proposed the Compute-and-Forward strategy as a physical-layer network coding scheme. They described a code structure based on nested lattices whose algebraic structure makes the scheme reliable and efficient. In th is work, we consider the implementation of their scheme for real Gaussian channels and one dimensional lattices. We relate the maximization of the transmission rate to the lattice shortest vector problem. We explicit, in this case, the maximum likelihood criterion and show that it can be implemented by using an Inhomogeneous Diophantine Approximation algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا