ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of time series of monthly averaged values of F10.7 from 1950 to 2010

66   0   0.0 ( 0 )
 نشر من قبل Elena Bruevich Alecsandrovna
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prior to 1947, the activity of the Sun was assessed by the relative numbers of sunspots (W). The 10.7 cm radio emission (frequency of 2.8 GHz) for observations of the variability of radiation of chromosphere and the lower corona (F10.7) became used from 1947. For the F10,7 are available more detailed observational archive data, so this activity index more often than the other indices is used in the prediction and monitoring of the solar activity. We have made the analysis of time series of F10.7 with the use of different mother wavelets: Daubechies 10, Symlet 8, Meyer, Gauss 8 and Morlet. Wavelet spectrum allows us not only to identify cycles, but analyze their change in time. Each wavelet has its own characteristic features, so sometimes with the help of different wavelets it can be better identify and highlight the different properties of the analyzed signal. We intended to choose the mother wavelet, which is more fully gives information about the analyzed index F10.7. We have received, that all these wavelets show similar values to the maximums of the cyclic activity. However, we can see the difference when using different wavelets. There are also a number of periods, which, perhaps, are the harmonics of main period. The mean value of 11-year cycle is about 10.2 years. All the above examples show that the best results we get when using wavelets Morley, Gauss (real-valued) and multiparameter family of wavelets Morley and Gauss (complex-valued).

قيم البحث

اقرأ أيضاً

High-precision time series have recently become available for many stars as a result of data from CoRoT, Kepler, and TESS and have been widely used to study stellar activity. They provide information integrated over the stellar disk, hence many degen eracies between spots and plages or sizes and contrasts. Our aim is to understand how to relate photometric variability to physical parameters in order to help the interpretation of these observations. We computed a large number of synthetic time series of brightness variations for old MS stars within the F6-K4 range, using consistent modeling for radial velocity, astrometry, and LogRHK. We analyzed these time series to study the effect of the star spectral type on brightness variability, the relationship between brightness variability and LogRHK, the interpretation of brightness variability as a function of spot and plage properties, and the spot-dominated or plage-dominated regimes. Within our range of activity levels, the brightness variability increases toward low-mass stars, as suggested by Kepler results. Brightness variability roughly correlates to LogRHK level, but with a large dispersion, caused by spot contrast and inclination. It is also directly related to the number of structures, and we show that it cannot be interpreted solely in terms of spot sizes. In the activity range of old main-sequence stars, we can obtain both spot or plage dominated regimes, as in observation. The same star can be observed in both regimes depending on inclination. Only strong correlations between LogRHK and brightness variability are significant. Our realistic time series proves to be extremely useful when interpreting observations and understanding their limitations, most notably in terms of activity interpretation. Inclination is crucial and affects many properties, such as amplitudes and the respective role of spots and plages.
The IRAS source, 19312+1950, exhibits SiO maser emission, which is predominantly detected in evolved stars enshrouded by a cold molecular envelope. In fact, the mojority of the observational properties of IRAS 19312+1950 is consistent with the nature of an asymptotic giant branch (AGB) star or post-AGB star. Interestingly, however, some of the observational properties cannot be readily explained within the standard scheme of stellar evolution, and those are rather reminiscent of young stellar objects. In the present research we considered the evolutionary status of IRAS 19312+1950 as revealed by the VLBI and MERLIN observations in SiO, H2O and OH maser lines. The double-peaked profile of the 22 GHz H2O maser line is clearly detected, with the emission regions of its red and blue-shifted components separately located, leaving a space of about 10.9 mas between them. The kinematic properties of H2O maser emission region appear to be more consistent with a bipolar flow rather than other interpretations such as the Keplerian rotation of a disk. The red-shifted component of the SiO maser emission, which exhibits a double-peak profile in previous single-dish observations, is clearly detected in the present interferometry, while the 1612 MHz OH maser line exhibits a complicated line profile consisting of a single strong peak and many weak, high-velocity spikes. The structure of OH maser emission region is partially resolved, and the kinematic properties of the OH maser emission region are reminiscent observations of a spherically expanding shell, even though the evidence is scant. Collectively, the maser observations described here provide additional support for the evolved star hypothesis for IRAS 19312+1950.
Our comprehension of stellar evolution on the AGB still faces many difficulties. To improve on this, a quantified understanding of large-amplitude pulsator atmospheres and interpretation in terms of their fundamental stellar parameters are essential. We wish to evaluate the effectiveness of the recently released CODEX dynamical model atmospheres in representing M-type Mira variables through a confrontation with the time-resolved spectro-photometric and interferometric PTI data set of TU And. We calibrated the interferometric K-band time series to high precision. This results in 50 nights of observations, covering 8 subsequent pulsation cycles. At each phase, the flux at 2.2$mu$m is obtained, along with the spectral shape and visibility points in 5 channels across the K-band. We compared the data set to the relevant dynamical, self-excited CODEX models. Both spectrum and visibilities are consistently reproduced at visual minimum phases. Near maximum, our observations show that the current models predict a photosphere that is too compact and hot, and we find that the extended atmosphere lacks H2O opacity. Since coverage in model parameter space is currently poor, more models are needed to make firm conclusions on the cause of the discrepancies. We argue that for TU And, the discrepancy could be lifted by adopting a lower value of the mixing length parameter combined with an increase in the stellar mass and/or a decrease in metallicity, but this requires the release of an extended model grid.
Though there is increasing evidence linking the moat flow and the Evershed flow along the penumbral filaments, there is not a clear consensus regarding the existence of a moat flow around umbral cores and pores, and the debate is still open. Solar po res appear to be a suitable scenario to test the moat-penumbra relation as evidencing the direct interaction between the umbra and the convective plasma in the surrounding photosphere, without any intermediate structure in between. The present work studies solar pores based on high resolution ground-based and satellite observations. Local correlation tracking techniques have been applied to different-duration time series to analyze the horizontal flows around several solar pores. Our results establish that the flows calculated from different solar pore observations are coherent among each other and show the determinant and overall influence of exploding events in the granulation around the pores. We do not find any sign of moat-like flows surrounding solar pores but a clearly defined region of inflows surrounding them. The connection between moat flows and flows associated to penumbral filaments is hereby reinforced by this work.
Inhibition of the convective blueshift in active regions is a major contribution to the radial velocity variations, at least for solar-like stars. A common technique to correct for this component is to model the RV as a linear function of chromospher ic emission, because both are strongly correlated with the coverage by plages. This correction is not perfect: the aim of the present study is to understand the limits of this correction and to improve it. We investigate these questions by analysing a large set of synthetic time series corresponding to old main sequence F6-K4 stars modelled using a consistent set of parameters. We focus here on the analysis of the correlation between time series, in particular between RV and chromospheric emission on different timescales. We also study the temporal variation for each time series. Inclination strongly impacts these correlations, as well as additional signals (granulation and supergranulation). Although RV and LogRHK are often well correlated, a combination of geometrical effects (butterfly diagrams related to dynamo processes and inclination) and activity level variations over time create an hysteresis pattern during the cycle, which produces a departure from an excellent correlation: for a given activity level, the RV is higher or lower during the ascending phase compared to the descending phase of the cycle depending on inclination, with a reversal for inclinations about 60 deg from pole-on. This hysteresis is also observed for the Sun and other stars. This property is due to the spatio-temporal distribution of the activity pattern and to the difference in projection effects of the RV and chromospheric emission. These results allow us to propose a new method which significantly improves the correction for long timescales, and could be crucial to improving detection rates of planets in the habitable zone around F6-K4 stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا