ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards weighing the condensation energy to ascertain the Archimedes force of vacuum

86   0   0.0 ( 0 )
 نشر من قبل Giampiero Esposito Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The force exerted by the gravitational field on a Casimir cavity in terms of Archimedes force of vacuum is discussed, the force that can be tested against observation is identified, and it is shown that the present technology makes it possible to perform the first experimental tests. The use of suitable high-Tc superconductors as modulators of Archimedes force is motivated. The possibility is analyzed of using gravitational wave interferometers as detectors of the force, transported through an optical spring from the Archimedes vacuum force apparatus to the gravitational interferometer test masses to maintain the two systems well separated. The use of balances to actuate and detect the force is also analyzed, the different solutions are compared, and the most important experimental issues are discussed.



قيم البحث

اقرأ أيضاً

Archimedes is a feasibility study to a future experiment to ascertain the interaction of vacuum fluctuations with gravity. The future experiment should measure the force that the Earths gravitational field exerts on a Casimir cavity by using a balanc e as the small force detector. The Archimedes experiment analyses the important parameters in view of the final measurement and experimentally explores solutions to the most critical problems.
Archimedes is a feasibility study of a future experiment to ascertain the interaction of vacuum fluctuations with gravity. The experiment should measure the force that the earths gravitational field exerts on a Casimir cavity by using a small force d etector. Here we analyse the main parameters of the experiment and we present its conceptual scheme, which overcomes in principle the most critical problems.
Archimedes is an INFN-funded pathfinder experiment aimed at verifying the feasibility of measuring the interaction of vacuum fluctuations with gravity. The final experiment will measure the force exerted by the gravitational field on a Casimir cavity whose vacuum energy is modulated with a superconductive transition, by using a balance as a small force detector. Archimedes is a two-year project devoted to test the most critical experimental aspects, in particular the balance resonance frequency and quality factor, the thermal modulation efficiency and the superconductive sample realization.
We study the cosmology with the running dark energy. The parametrization of dark energy with the respect to the redshift is derived from the first principles of quantum mechanics. Energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. This is the class of the extended interacting $Lambda$CDM models. We consider the energy density of dark energy parametrization $rho_text{de}(t)$, which follows from the Breit-Wigner energy distribution function which is used to model the quantum unstable systems. The idea that properties of the process of the quantum mechanical decay of unstable states can help to understand the properties of the observed universe was formulated by Krauss and Dent and this idea was used in our considerations. In the cosmological model with the mentioned parametrization there is an energy transfer between the dark matter and dark energy. In such a evolutional scenario the universe is starting from the false vacuum state and going to the true vacuum state of the present day universe. We find that the intermediate regime during the passage from false to true vacuum states takes place. The intensity of the analyzed process is measured by a parameter $alpha$. For the small value of $alpha$ ($0<alpha <0.4$) this intermediate (quantum) regime is characterized by an oscillatory behavior of the density of dark energy while the for $alpha > 0.4$ the density of the dark energy simply jumps down. In both cases (independent from the parameter $alpha$) the today value of density of dark energy is reached at the value of $0.7$. We estimate the cosmological parameters for this model with visible and dark matter. This model becomes in good agreement with the astronomical data and is practically indistinguishable from $Lambda$CDM model.
We introduce a generalization of the usual vacuum energy, called `deformed vacuum energy, which yields anisotropic pressure whilst preserving zero inertial mass density. It couples to the shear scalar in a unique way, such that they together emulate the canonical scalar field with an arbitrary potential. This opens up a new avenue by reconsidering cosmologies based on canonical scalar fields, along with a bonus that the kinetic term of the scalar field is replaced by an observable, the shear scalar. We further elaborate the aspects of this approach in the context of dark energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا