ﻻ يوجد ملخص باللغة العربية
The topology and the geometry of a surface play a fundamental role in determining the equilibrium configurations of thin films of liquid crystals. We propose here a theoretical analysis of a recently introduced surface Frank energy, in the case of two-dimensional nematic liquid crystals coating a toroidal particle. Our aim is to show how a different modeling of the effect of extrinsic curvature acts as a selection principle among equilibria of the classical energy, and how new configurations emerge. In particular, our analysis predicts the existence of new stable equilibria with complex windings.
We analyze an elastic surface energy which was recently introduced by G. Napoli and L.Vergori to model thin films of nematic liquid crystals. We show how a novel approach that takes into account also the extrinsic properties of the surfaces coated by
In the first part of this paper, we will consider minimizing configurations of the Oseen-Frank energy functional $E(n, m)$ for a biaxial nematics $(n, m):Omegato mathbb S^2times mathbb S^2$ with $ncdot m=0$ in dimension three, and establish that it i
We develop a rigorous, field-theoretical approach to the study of spontaneous emission in inertial and dissipative nematic liquid crystals, disclosing an alternative application of the massive Stueckelberg gauge theory to describe critical phenomena
We consider a monomer-dimer system with a strong attractive dimer-dimer interaction that favors alignment. In 1979, Heilmann and Lieb conjectured that this model should exhibit a nematic liquid crystal phase, in which the dimers are mostly aligned, b
We consider the simplified Ericksen-Leslie model in three dimensional bounded Lipschitz domains. Applying a semilinear approach, we prove local and global well-posedness (assuming a smallness condition on the initial data) in critical spaces for init