ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotationally resolved spectroscopy of (20000) Varuna in the near-infrared

100   0   0.0 ( 0 )
 نشر من قبل Vania Lorenzi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Lorenzi




اسأل ChatGPT حول البحث

Models of the escape and retention of volatiles by minor icy objects exclude any presence of volatile ices on the surface of TNOs smaller than ~1000km in diameter at the typical temperature in this region of the solar system, whereas the same models show that water ice is stable on the surface of objects over a wide range of diameters. Collisions and cometary activity have been used to explain the process of surface refreshing of TNOs and Centaurs. These processes can produce surface heterogeneity that can be studied by collecting information at different rotational phases. The aims of this work are to study the surface composition of (20000)Varuna, a TNO with a diameter ~650km and to search for indications of rotational variability. We observed Varuna during two consecutive nights in January 2011 with NICS@TNG obtaining a set of spectra covering the whole rotation period of Varuna. After studying the spectra corresponding to different rotational phases, we did not find any indication of surface variability. In all the spectra, we detect an absorption at 2{mu}m, suggesting the presence of water ice on the surface. We do not detect any other volatiles on the surface, although the S/N is not high enough to discard their presence. Based on scattering models, we present two possible compositions compatible with our set of data and discuss their implications in the frame of the collisional history of the Kuiper Belt. We find that the most probable composition for the surface of Varuna is a mixture of amorphous silicates, complex organics, and water ice. This composition is compatible with all the materials being primordial. However, our data can also be fitted by models containing up to a 10% of methane ice. For an object with the characteristics of Varuna, this volatile could not be primordial, so an event, such as an energetic impact, would be needed to explain its presence on the surface.

قيم البحث

اقرأ أيضاً

Apollo-type NEA (3200) Phaethon, classified at the B/F-type taxonomy, probably the main mass of the Phaethon-Geminid stream complex (PGC), can be the most metamorphic C-complex asteroid in our solar system, since it is heated up to ~1000 K by the sol ar radiation around its perihelion passages. Hence, its surface material may be easily decomposed in near-sun environment. Phaethons spectrum exhibits extremely blue-slope in the VIS-NIR region (so-called Phaethon Blue). Another candidate large member of the PGC, (155140) 2005 UD, shows a B/F-type color, however with a C-type-like red color over its ~1/4 rotational part, which implies an exposition of less metamorphosed primordial internal structure of the PGC precursor by a splitting or breakup event long ago. If so, some rotational part of Phaethon should show the C-type color as well as 2005 UD. Hence, we carried out the time-series VIS-spectroscopic observations of Phaethon using 1-m telescope in order to detect such a signature. Also, R-band photometries were simultaneously performed in order to complement our spectroscopy. Consequently, we obtained a total of 68 VIS-spectrophotometric data, 78% of which show the B-type blue-color, as against the rest of 22% showing the C-type red-color. We successfully acquired rotationally time-resolved spectroscopic data, of which particular rotational phase shows a red-spectral slope as the C-type color, as 2005 UD does, suggesting longitudinal inhomogeneity on Phaethons surface. We constrained this C-type red-colored area in the mid-latitude in Phaethons southern hemisphere based on the rotationally time-resolved spectroscopy along with Phaethons axial rotation state, of which size suggests the impact-induced origin of the PGC. We also surveyed the meteoritic analog of Phaethons surface blue-color, and found thermally metamorphosed CI/CM chondrites as likely candidates.
50 - F. Gourgeot , B. Carry , C. Dumas 2016
The transneptunian region of the solar system is populated by a wide variety of icy bodies showing great diversity. The dwarf planet (136108) Haumea is among the largest TNOs and displays a highly elongated shape and hosts two moons, covered with cry stalline water ice like Hamuea. Haumea is also the largest member of the sole TNO family known to date. A catastrophic collision is likely responsible for its unique characteristics. We report here on the analysis of a new set of observations of Haumea obtained with SINFONI at the ESO VLT. Combined with previous data, and using light-curve measurements in the optical and far infrared, we carry out a rotationally resolved spectroscopic study of the surface of Haumea. We describe the physical characteristics of the crystalline water ice present on the surface of Haumea for both regions, in and out of the Dark Red Spot (DRS), and analyze the differences obtained for each individual spectrum. The presence of crystalline water ice is confirmed over more than half of the surface of Haumea. Our measurements of the average spectral slope confirm the redder characteristic of the spot region. Detailed analysis of the crystalline water-ice absorption bands do not show significant differences between the DRS and the remaining part of the surface. We also present the results of applying Hapke modeling to our data set. The best spectral fit is obtained with a mixture of crystalline water ice (grain sizes smaller than 60 micron) with a few percent of amorphous carbon. Improvements to the fit are obtained by adding ~10% of amorphous water ice. Additionally, we used the IFU-reconstructed images to measure the relative astrometric position of the largest satellite Hi`iaka and determine its orbital elements. An orbital solution was computed with our genetic-based algorithm GENOID and our results are in full agreement with recent results.
363 - Theodore Kareta 2018
(3200) Phaethon is a compelling object as it has an asteroidal appearance and spectrum, produces a weak dust tail during perihelion at just 0.14 AU, and is the parent body of the Geminid Meteor Shower. A better understanding of the physical propertie s of Phaethon is needed to understand the nature of its current and previous activity, relationship to potential source populations, and to plan for the upcoming flyby of the DESTINY+ spacecraft of Phaethon in the 2020s. We performed rotationally-resolved spectroscopy of Phaethon at visible and near-infrared wavelengths (0.4-2.5 microns) in 2007 and 2017, respectively, to better understand its surface properties. The visible and near-infrared observations both spanned nearly a full rotation or more and were under similar observing geometries, covering the whole surface with the exception of the north pole. The visible wavelengths show blue slopes with only minor slope variations and no absorption features. The NIR data is minimally varying and concave upwards, from very blue to blue-neutral with increasing wavelength. We fit the short-wavelength tail of Phaethons thermal emission and retrieve an average visible albedo of pv = 0.08 +/- 0.01, which is lower than previous measurements but plausible in light of the recent larger radar-measured diameter of Phaethon. We retrieve an average infrared beaming parameter of Phaethon of eta = 1.70 +/- 0.05, which is similar to previous results. We discuss the implications of Phaethons visible and near-infrared spectrum as well as the lower albedo on its origin, source population, and evolutionary history.
We present the first-ever rotationally resolved spectroscopic investigation of (624) Hektor and (911) Agamemnon, the two largest Jupiter Trojans. The visible and near-infrared spectra that we have obtained at the TNG telescope (La Palma, Spain) do no t show any feature or hints of heterogeneity. In particular we found no hints of water-related absorptions. No cometary activity was detected down to ~23.5 R-mag/arcsec2 based on the complementary photometric data. We estimated upper limits on the dust production rates of Hektor and Agamemnon to be ~30 kg/s and ~24 kg/s, respectively. We modelled complete visible and near-infrared spectra of our targets using the Shkuratov formalism, to define the upper limit to the presence of water ice and more in general to constrain their surface composition. For both objects, successful models include amorphous carbon, magnesium-rich pyroxene and kerogen, with an upper limit to the amount of water ice of a few percent.
We observed (22) Kalliope and its companion Linus with the integral-field spectrograph OSIRIS, which is coupled to the adaptive optics system at the W.M. Keck II telescope on March 25 2008. We present, for the first time, component-resolved spectra a cquired simultaneously in each of the Zbb (1-1.18 um), Jbb (1.18-1.42 um), Hbb (1.47-1.80 um), and Kbb (1.97-2.38 um) bands. The spectra of the two bodies are remarkably similar and imply that both bodies were formed at the same time from the same material; such as via incomplete re-accretion after a major impact on the precursor body.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا