ترغب بنشر مسار تعليمي؟ اضغط هنا

The HST view of the broad line region in low luminosity AGN

189   0   0.0 ( 0 )
 نشر من قبل Barbara Balmaverde
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the properties of the broad line region (BLR) in low luminosity AGN by using HST/STIS spectra. We consider a sample of 24 nearby galaxies in which the presence of a BLR has been reported from their Palomar ground-based spectra. Following a widely used strategy, we used the [SII] doublet to subtract the contribution of the narrow emission lines to the H-alpha+[NII] complex and to isolate the BLR emission. Significant residuals that suggest a BLR, are present. However, the results change substantially when the [OI] doublet is used. Furthermore, the spectra are also reproduced well by just including a wing in the narrow H-alpha and [NII] lines, thus not requiring the presence of a BLR. We conclude that complex structure of the narrow line region (NLR) is not captured with this approach and that it does not lead to general robust constraints on the properties of the BLR in these low luminosity AGN. Nonetheless, the existence of a BLR is firmly established in 5 Seyferts, and 5 LINERs. However, the measured BLR fluxes and widths in the 5 LINERs differ substantially with respect to the ground-based data. The BLR sizes in LINERs, which are estimated by using the virial formula from the line widths and the black hole mass, are about 1 order of magnitude greater than the extrapolation to low luminosities of the relation between the BLR radius and AGN luminosity observed in more powerful active nuclei. We ascribe the larger BLR radius to the lower accretion rate in LINERs when compared to the Seyfert, which causes the formation of an inner region dominated by an advection-dominated accretion flow (ADAF). The estimated BLR sizes in LINERs are comparable to the radius where the transition between the ADAF and the standard thin disk occurs due to disk evaporation.



قيم البحث

اقرأ أيضاً

The Broad Emission Lines (BELs) in spectra of type 1 Active Galactic Nuclei (AGN) can be very complex, indicating a complex Broad Line Region (BLR) geometry. According to the standard unification model one can expect an accretion disk around a superm assive black hole in all AGN. Therefore, a disk geometry is expected in the BLR. However, a small fraction of BELs show double-peaked profiles which indicate the disk geometry. Here, we discuss a two-component model, assuming an emission from the accretion disk and one additional emission from surrounding region. We compared the modeled BELs with observed ones (mostly broad H$alpha$ and H$beta$ profiles) finding that the model can well describe single-peaked and double-peaked observed broad line profiles.
We study the properties of the emission line regions in two samples of low luminosity radio-galaxies (LLRG), focusing on the compact emission line region (CELR) revealed to be a characteristic feature of these objects by HST narrow-band imaging. We f ind a strong correlation between line and optical continuum nuclear emission, suggesting that the optical cores (most likely of non thermal origin) can be directly associated to the source of ionizing photons, i.e. that we are seeing a jet-ionized narrow line region. A photon budget argument indicates that the optical nuclear sources produce a sufficient photon flux provided that the covering factor of the circum-nuclear gas is rather large, on average ~ 0.3. Analysis of HST images and spectra suggests that the CELR may take the form of a pc-scale, high filling factor, structure, possibly an optically thin torus. Estimates of the CELR mass lead to values as small as 10 - 1000 solar masses and photon counting sets a limit to the BLR mass of 0.01 solar masses. When considered together with the low accretion rate and the tenuous torus structure, a general paucity of gas in the innermost regions of LLRG emerges as the main characterizing difference from more powerful AGN.
We analyze the properties of the innermost narrow line region in a sample of low-luminosity AGN. We select 33 LINERs (bona fide AGN) and Seyfert galaxies from the optical spectroscopic Palomar survey observed by HST/STIS. We find that in LINERs the [ NII] and [OI] lines are broader than the [SII] line and that the [NII]/[SII] flux ratio increases when moving from ground-based to HST spectra. This effect is more pronounced considering the wings of the lines. Our interpretation is that, as a result of superior HST spatial resolution, we isolate a compact region of dense ionized gas in LINERs, located at a typical distance of about 3 pc and with a gas density of about 10$^4$-10$^5$ cm$^{-3}$, which we identify with the outer portion of the intermediate line region (ILR). Instead, we do not observe these kinds of effects in Seyferts; this may be the result of a stronger dilution from the NLR emission, since the HST slit maps a larger region in these sources. Alternatively, we argue that the innermost, higher density component of the ILR is only present in Seyferts, while it is truncated at larger radii because of the presence of the circumnuclear torus. The ILR is only visible in its entirety in LINERs because the obscuring torus is not present in these sources.
186 - Moshe Elitzur , Luis C. Ho 2009
The disk-wind scenario for the broad-line region (BLR) and toroidal obscuration in active galactic nuclei predicts the disappearance of the BLR at low luminosities. In accordance with the model predictions, data from a nearly complete sample of nearb y AGNs show that the BLR disappears at luminosities lower than $5timesE{39} (M/10^7Mo)^{2/3}$ erg s$^{-1)$, where $M$ is the black hole mass. The radiative efficiency of accretion onto the black hole is $la E{-3}$ for these sources, indicating that their accretion is advection-dominated.
Results of a long-term monitoring ($gtrsim 10$ years) of the broad line and continuum fluxes of three Active Galactic Nuclei (AGN), 3C 390.3, NGC 4151, and NGC 5548, are presented. We analyze the H$alpha$ and H$beta$ profile variations during the mon itoring period and study different details (as bumps, absorption bands) which can indicate structural changes in the Broad Line Region (BLR). The BLR dimensions are estimated using the time lags between the continuum and the broad lines flux variations. We find that in the case of 3C 390.3 and NGC 5548 a disk geometry can explain both the broad line profiles and their flux variations, while the BLR of NGC 4151 seems more complex and is probably composed of two or three kinematically different regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا