ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of AMM on the EoS of Magnetized Dense Systems

42   0   0.0 ( 0 )
 نشر من قبل Daryel Manreza
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effects of the anomalous magnetic moment (AMM) in the EoS of a fermion system in the presence of a magnetic field. In the region of strong magnetic fields ($B>m^2$) the AMM is found from the one-loop fermion self-energy. In contrast to the weak-field AMM found by Schwinger, in the strong magnetic field case, the AMM depends on the Landau level (LL) and decreases with it. The effects of the AMM in the EoS at intermediate-to-large fields can be found introducing the one-loop, LL-dependent AMM in the effective Lagrangian that is then used to find the thermodynamic potential of the system. We compare the plots of the parallel and perpendicular pressures versus the magnetic field in the strong field region considering the LL-dependent AMM, the Schwinger AMM, and no AMM at all. The results clearly show a separation between the physical magnitudes found using the Schwinger AMM and the LL-dependent AMM. This is an indication of the inconsistency of considering the Schwinger AMM beyond the weak field region $B< m^2$ where it was originally found. The curves for the EoS, pressures and magnetization at different fields give rise to the well-known de Haas van Alphen oscillations, associated to the change in the number of LL contributing at different fields.

قيم البحث

اقرأ أيضاً

We investigate the quantum corrections of the anomalous magnetic moment (AMM) for fermions in the presence of a strong magnetic field using the Rituss approach. At strong fields the particles get different AMMs depending on the LLs. This result is di fferent from what is obtained with the Schwingers approximation at weak field where the AMM is independent of the LL. We analyze the significance of the AMM contribution to the Equation of State (EoS) of the magnetized system, in the weak and strong field approximations.
Dilepton production rate (DPR) from hot and dense quark matter is studied in the presence of an arbitrary external magnetic field using the 2-flavour Nambu--Jona-Lasinio (NJL) model. The anomalous magnetic moment (AMM) of the quarks is taken into con sideration while calculating the constituent quark mass as well as the DPR from the thermo-magnetic medium. An infinite number of quark Landau levels is incorporated so that no approximations are made on the strength of the background magnetic field. The analytic structure of the two point vector current correlation function in the complex energy plane reveals that, in addition to the usual Unitary cut, a non-trival Landau cut appears in the physical kinematic domains solely due to the external magnetic field. Moreover, these kinematic domains of the Unitary and Landau cuts are found to be significantly modified due to the AMM of the quarks. With finite AMM of the quarks, for certain values of the external magnetic field, the kinematically forbidden gap between the Unitary and Landau cuts are shown to vanish leading to the generation of a continuous spectrum of dilepton emission over the whole invariant mass region not observed earlier.
Various thermodynamic quantities and the phase diagram of strongly interacting hot and dense magnetized quark matter are obtained with the $ 2 $-flavour Nambu-Jona-Lasinio model with Polyakov loop considering finite values of the anomalous magnetic m oment (AMM) of the quarks. Susceptibilities associated with constituent quark mass and traced Polyakov loop are used to evaluate chiral and deconfinement transition temperatures. It is found that, inclusion of the AMM of the quarks in presence of the background magnetic field results in a substantial decrease in the chiral as well as deconfinement transition temperatures in contrast to an enhancement in the chiral transition temperature in its absence. Using standard techniques of finite temperature field theory, the two point thermo-magnetic mesonic correlation functions in the scalar ($sigma$) and neutral pseudoscalar ($pi^0$) channels are evaluated to calculate the masses of $sigma $ and $ pi^0 $ considering the AMM of the quarks.
A state-of-the-art 3+1 dimensional cascade + viscous hydro + cascade model vHLLE+UrQMD has been applied to heavy ion collisions in RHIC Beam Energy Scan range $sqrt{s_{rm NN}}=7.7dots 200$ GeV. Based on comparison to available experimental data it wa s estimated that an effective value of shear viscosity over entropy density ratio $eta/s$ in hydrodynamic stage has to decrease from $eta/s=0.2$ to $0.08$ as collision energy increases from $sqrt{s_{rm NN}} = 7.7$ to $39$ GeV, and to stay at $eta/s=0.08$ for $39lesqrt{s_{rm NN}}le200$ GeV. In this work we show how an equation of state with first order phase transition affects the hydrodynamic evolution at those collision energies and changes the results of the model as compared to default scenario with a crossover type EoS from chiral model.
Effects of the in-medium modifications of nucleon form factors on neutrino interaction in dense matter are presented by considering both the weak and electromagnetic interactions of neutrinos with the constituents of the matter. A relativistic mean f ield and the quark-meson coupling models are respectively adopted for the effective nucleon mass and in-medium nucleon form factors. We calculate the cross-section of neutrino scattering as well as the neutrino mean free path. We found the cross sections of neutrino scattering in cold nuclear medium decreases when the in-medium modifications of the nucleon weak and electromagnetic form factors are taken into account.This reduction results in the enhancement of the neutrino mean free path, in particular at the baryon density of around a few times of the normal nuclear matter density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا