ﻻ يوجد ملخص باللغة العربية
We analyze the fast transient dynamics of a multi-longitudinal mode semiconductor laser on the basis of a model with intensity coupling. The dynamics, coupled to the constraints of the system and the below-threshold initial conditions, imposes a faster growth of the side modes in the initial stages of the transient, thereby leading the laser through a sequence of states where the modal intensity distribution dramatically differs from the asymptotic one. A detailed analysis of the below-threshold, deterministic dynamical evolution allows us to explain the modal dynamics in the strongly coupled regime where the total intensity peak and relaxation oscillations take place, thus providing an explanation for the modal dynamics observed in the slow, hidden evolution towards the asymptotic state (cf. Phys. Rev. A 85, 043823 (2012)). The dynamics of this system can be interpreted as the transient response of a driven, globally coupled ensemble of nonlinear modes evolving towards an equilibrium state. Since the qualitative dynamics do not depend on the details of the interaction but only on the structure of the coupling, our results hold for a whole class of globally, bilinearly coupled oscillators.
We present an experimental and theoretical study of modal nonlinear dynamics in a specially designed dual-mode semiconductor Fabry-Perot laser with a saturable absorber. At zero bias applied to the absorber section, we have found that with increasing
We consider the rotational dynamics in an ensemble of globally coupled identical pendulums. This model is essentially a generalization of the standard Kuramoto model, which takes into account the inertia and the intrinsic nonlinearity of the communit
Dispersive Fourier transform (TS-DFT) technique opens a fascinating pathway to explore the ultrafast non-repetitive even, which has been employed to study the build-up process of mode-locked lasers. Here the whole evolution dynamics (from starting up
Quantum cascade lasers (QCL) have revolutionized the generation of mid-infrared light. Yet, the ultrafast carrier transport in mid-infrared QCLs has so far constituted a seemingly insurmountable obstacle for the formation of ultrashort light pulses.
In this article we review recent theoretical and experimental developments on multilongitudinal-mode emission in ring cavity lasers, paying special attention to class B lasers. We consider both homogeneously and inhomogeneously broadened amplifying m