ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast dynamics and spectral properties of a multilongitudinal-mode semiconductor laser: evolution of an ensemble of driven, globally coupled nonlinear modes

127   0   0.0 ( 0 )
 نشر من قبل Gian Piero Puccioni
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the fast transient dynamics of a multi-longitudinal mode semiconductor laser on the basis of a model with intensity coupling. The dynamics, coupled to the constraints of the system and the below-threshold initial conditions, imposes a faster growth of the side modes in the initial stages of the transient, thereby leading the laser through a sequence of states where the modal intensity distribution dramatically differs from the asymptotic one. A detailed analysis of the below-threshold, deterministic dynamical evolution allows us to explain the modal dynamics in the strongly coupled regime where the total intensity peak and relaxation oscillations take place, thus providing an explanation for the modal dynamics observed in the slow, hidden evolution towards the asymptotic state (cf. Phys. Rev. A 85, 043823 (2012)). The dynamics of this system can be interpreted as the transient response of a driven, globally coupled ensemble of nonlinear modes evolving towards an equilibrium state. Since the qualitative dynamics do not depend on the details of the interaction but only on the structure of the coupling, our results hold for a whole class of globally, bilinearly coupled oscillators.



قيم البحث

اقرأ أيضاً

We present an experimental and theoretical study of modal nonlinear dynamics in a specially designed dual-mode semiconductor Fabry-Perot laser with a saturable absorber. At zero bias applied to the absorber section, we have found that with increasing device current, single mode self-pulsations evolve into a complex dynamical state where the total intensity experiences regular bursts of pulsations on a constant background. Spectrally resolved measurements reveal that in this state the individual modes of the device can follow highly symmetric but oppositely directed spiralling orbits. Using a generalization of the rate equation description of a semiconductor laser with saturable absorption to the multimode case, we show that these orbits appear as a consequence of the interplay between the material dispersion in the gain and absorber sections of the laser. Our results provide insights into the factors that determine the stability of multimode states in these systems, and they can inform the development of semiconductor mode-locked lasers with tailored spectra.
We consider the rotational dynamics in an ensemble of globally coupled identical pendulums. This model is essentially a generalization of the standard Kuramoto model, which takes into account the inertia and the intrinsic nonlinearity of the communit y elements. There exists the wide variety of in-phase and out-of-phase regimes. Many of these states appear due to broken symmetry. In the case of small dissipation our theoretical analysis allows one to find the boundaries of the instability domain of in-phase rotational mode for ensembles with arbitrary number of pendulums, describe all arising out-of-phase rotation modes and study in detail their stability. For the system of three elements parameter sets corresponding to the unstable in-phase rotations we find a number of out-of-phase regimes and investigate their stability and bifurcations both analytically and numerically. As a result, we obtain a sufficiently detailed picture of the symmetry breaking and existence of various regular and chaotic states.
Dispersive Fourier transform (TS-DFT) technique opens a fascinating pathway to explore the ultrafast non-repetitive even, which has been employed to study the build-up process of mode-locked lasers. Here the whole evolution dynamics (from starting up to shutting down) of conventional soliton (CS), stretched pulse (SP) and dissipative soliton (DS) are investigated by using TS-DFT technique. The relaxation oscillation can be always observed before the formation of stable pulse operation, which is stemmed from the inherent advantage of the single-walled carbon nanotube. However, owing to the different pulse features, they exhibit the distinct evolution dynamics in the starting and shutting processes. Some critical phenomena are observed, including transient complex spectrum broadening and frequency-shift interaction of SP and picosecond pulses. These results could further deepen the understanding of the mode-locked fiber laser from the real-time point of view and is helpful for the laser design and applications.
Quantum cascade lasers (QCL) have revolutionized the generation of mid-infrared light. Yet, the ultrafast carrier transport in mid-infrared QCLs has so far constituted a seemingly insurmountable obstacle for the formation of ultrashort light pulses. Here, we demonstrate that careful quantum design of the gain medium and control over the intermode beat synchronization enable transform-limited picosecond pulses from QCL frequency combs. Both an interferometric radio-frequency technique and second-order autocorrelation shed light on the pulse dynamics and confirm that mode-locked operation is achieved from threshold to rollover current. Being electrically pumped and compact, mode-locked QCLs pave the way towards monolithically integrated non-linear photonics in the molecular fingerprint region beyond 6 $mu$m wavelength.
In this article we review recent theoretical and experimental developments on multilongitudinal-mode emission in ring cavity lasers, paying special attention to class B lasers. We consider both homogeneously and inhomogeneously broadened amplifying m edia as well as the limits of small and large cavity losses (i.e., we treat cases within and outside the uniform field limit approximation). In particular we discuss up to what extent the experimental observations of self-mode locking in erbium-doped fiber lasers carried out in recent years are a manifestation of the Risken-Nummedal-Graham-Haken instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا