ﻻ يوجد ملخص باللغة العربية
We investigate a resonantly modulated harmonic mode, dispersively coupled to a nonequilibrium few-level quantum system. We focus on the regime where the relaxation rate of the system greatly exceeds that of the mode, and develop a quantum adiabatic approach for analyzing the dynamics. Semiclassically, the dispersive coupling leads to a mutual tuning of the mode and system into and out of resonance with their modulating fields, leading to multistability. In the important case where the system has two energy levels and is excited near resonance, the compound system can have up to three metastable states. Nonadiabatic quantum fluctuations associated with spontaneous transitions in the few-level system lead to switching between the metastable states. We provide parameter estimates for currently available systems.
We investigate bistability and memory effects in a molecular junction weakly coupled to metallic leads with the latter being subject to an adiabatic periodic change of the bias voltage. The system is described by a simple Anderson-Holstein model and
Quantum computers require interfaces with classical electronics for efficient qubit control, measurement and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate
We propose and study a spin-orbit interaction based mechanism to actively cool down the torsional vibration of a nanomechanical resonator made by semiconductor materials. We show that the spin-orbit interactions of electrons can induce a coherent cou
Dispersive sensing is a powerful technique that enables scalable and high-fidelity readout of solid-state quantum bits. In particular, gate-based dispersive sensing has been proposed as the readout mechanism for future topological qubits, which can b
Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot t