ترغب بنشر مسار تعليمي؟ اضغط هنا

A new picture for the chiral symmetry properties within a particle-core framework

117   0   0.0 ( 0 )
 نشر من قبل Apolodor Aristotel Raduta
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Generalized Coherent State Model, proposed previously for a unified description of magnetic and electric collective properties of nuclear systems, is extended to account for the chiral like properties of nuclear systems. To a phenomenological core described by the GCSM a set of interacting particles are coupled. Among the particle-core states one identifies a finite set which have the property that the angular momenta carried by the proton and neutron quadrupole bosons and the particles respectively, are mutually orthogonal. All terms of the model Hamiltonian satisfy the chiral symmetry except for the spin-spin interaction. The magnetic properties of the particle-core states, where the three mentioned angular momenta are orthogonal, are studied. A quantitative comparison of these features with the similar properties of states, where the three angular momenta belong to the same plane, is performed.

قيم البحث

اقرأ أيضاً

192 - M. R. Robilotta 2008
Chiral expansions of the two-pion exchange components of both two- and three-nucleon forces are reviewed and a discussion is made of the predicted pattern of hierarchies. The strength of the scalar-isoscalar central potential is found to be too large and to defy expectations from the symmetry. The causes of this effect can be understood by studying the nucleon scalar form factor.
If one assumes a translationally invariant motion of the nucleons relative to the c. m. position in single particle mean fields a correlated single particle picture of the nuclear wave function emerges. A single particle product ansatz leads for that Hamiltonian to nonlinear equations for the single particle wave functions. In contrast to a standard not translationally invariant shell model picture those single particle s-, p- etc states are coupled. The strength of the resulting coupling is an open question. The Schroedinger equation for that Hamiltonian can be solved by few- and many -body techniques, which will allow to check the validity or non-validity of a single particle product ansatz. Realistic nuclear wave functions exhibit repulsive 2-body short range correlations. Therefore a translationally invariant single particle picture -- if useful at all -- can only be expected beyond those ranges. Since exact A = 3 and 4 nucleon ground state wave functions and beyond based on modern nuclear forces are available, the translationally invariant shell model picture can be optimized by an adjustment to the exact wave function and its validity or non-validity decided.
A systematic study on the effect of secondary decay on the symmetry energy coefficient extracted by isoscaling and the recently proposed isobaric yield ratio methods within the Statistical Multifragmentation Model is performed. The correlations betwe en the input symmetry energy coefficients and the calculated ones from both primary and secondary fragment yields are analysed. Results for secondary fragments show that the best estimation of the input symmetry energy coefficient within SMM is obtained by the isoscaling method, using the yields of light fragments. A comparison to experimental results is also presented.
104 - Silas R. Beane 2013
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincare generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstones theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann-Oakes-Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model.
We review the implementation of a q-deformed fermionic algebra in the Nambu--Jona-Lasinio model (NJL). The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian are discussed. The effect of both temp erature and deformation in the chiral symmetry restoration process as well as in the pion properties is studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا