ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant modification of atomic transitions probabilities induced by magnetic field: forbidden transitions become predominant

105   0   0.0 ( 0 )
 نشر من قبل Rafayel Mirzoyan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic field-induced giant modification of probabilities for seven components of 6S1/2 (Fg=3) - 6P3/2 (Fe=5) transition of Cs D2 line forbidden by selection rules is observed experimentally for the first time. For the case of excitation with circularly-polarized laser radiation, the probability of Fg=3,mF=-3 - Fe=5,mF=-2 transition becomes the largest among 25 transitions of Fg=3 - Fe=2,3,4,5 group in a wide range of magnetic field 200 - 3200 G. Moreover, the modification is the largest among D2 lines of alkali metals. A half-wave-thick cell (length along the beam propagation axis L=426 nm) filled with Cs has been used in order to achieve sub-Doppler resolution which allows for separating the large number of atomic transitions that appear in the absorption spectrum when an external magnetic field is applied. For B > 3 kG the group of seven transitions Fg=3 - Fe=5 is completely resolved and is located at the high frequency wing of Fg=3 - Fe=2,3,4 transitions. The applied theoretical model very well describes the experimental curves.



قيم البحث

اقرأ أيضاً

Spectroscopy is an essential tool in understanding and manipulating quantum systems, such as atoms and molecules. The model describing spectroscopy includes a multipole-field interaction, which leads to established spectroscopic selection rules, and an interaction that is quadratic in the field, which is often neglected. However, spectroscopy using the quadratic (ponderomotive) interaction promises two significant advantages over spectroscopy using the multipole-field interaction: flexible transition rules and vastly improved spatial addressability of the quantum system. For the first time, we demonstrate ponderomotive spectroscopy by using optical-lattice-trapped Rydberg atoms, pulsating the lattice light at a microwave frequency, and driving a microwave atomic transition that would otherwise be forbidden by established spectroscopic selection rules. This new ability to measure frequencies of previously inaccessible transitions makes possible improved determinations of atomic characteristics and constants underlying physics. In the spatial domain, the resolution of ponderomotive spectroscopy is orders of magnitude better than the transition frequency (and the corresponding diffraction limit) would suggest, promising single-site addressability in a dense particle array for quantum control and computing applications. Future advances in technology may allow ponderomotive spectroscopy to be extended to ground-state atoms and trapped molecules.
We report the first observation of a non-dipole transition in an ultra-cold atomic vapor. We excite the 3P-4P electric quadrupole (E2) transition in $^{23}$Na confined in a Magneto-Optical Trap(MOT), and demonstrate its application to high-resolution spectroscopy by making the first measurement of the hyperfine structure of the 4P$_{1/2}$ level and extracting the magnetic dipole constant A $=$ 30.6 $pm$ 0.1 MHz. We use cw OODR (Optical-Optical Double Resonance) accompanied by photoinization to probe the transition.
The existence of cross-over resonances makes saturated-absorption spectra very complicated when external magnetic field B is applied. It is demonstrated for the first time that the use of micrometric-thin cells (MTC, $Lapprox40,mu$m) allows applicati on of SA for quantitative studies of frequency splittings and shifts of the Rb atomic transitions in a wide range of external magnetic fields, from 0.2 up to 6 kG (20-600 mT). We compare the SA spectra obtained with the MTC with those obtained with other techniques, and present applications for optical magnetometry with micrometer spatial resolution and a broadly tunable optical frequency reference.
A theoretical study is performed for the excitation of a single atom localized in the center of twisted light modes. Here we present the explicit dependence of excitation rates on critical parameters, such as the polarization of light, its orbital an gular momentum projection, and the orientation of its propagation axis with respect to the atomic quantization axis. The effect of a spatial spread of the atom is also considered in detail. The expressions for transition rates obtained in this work can be used for any atom of arbitrary electronic configuration. For definiteness we apply them to the specific case of $^{2}S_{1/2} (F=0) rightarrow; ^{2}F_{7/2} (F=3, M=0)$ electric octupole (E3) transition in $^{171}$Yb$^{+}$ ion. Our analytical and numerical results are suitable for the analysis and planning of future experiments on the excitation of electric-dipole-forbidden transitions by twisted light modes in optical atomic clocks.
Different instabilities have been speculated for a three-dimensional electron gas confined to its lowest Landau level. The phase transition induced in graphite by a strong magnetic field, and believed to be a Charge Density Wave (CDW), is the only ex perimentally established case of such instabilities. Studying the magnetoresistance in graphite for the first time up to 80 T, we find that the magnetic field induces two successive phase transitions, consisting of two distinct ordered states each restricted to a finite field window. In both states, an energy gap opens up in the out-of-plane conductivity and coexists with an unexpected in-plane metallicity for a fully gap bulk system. Such peculiar metallicity may arise as a consequence of edge-state transport expected to develop in presence of a bulk gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا