ﻻ يوجد ملخص باللغة العربية
We present a new statistical modelling approach where the response is a function of high frequency count data. Our application is about investigating the relationship between the health outcome fat mass and physical activity (PA) measured by accelerometer. The accelerometer quantifies the intensity of physical activity as counts per epoch over a given period of time. We use data from the Avon longitudinal study of parents and children (ALSPAC) where accelerometer data is available as a time series of accelerometer counts per minute over seven days for a subset of children. In order to compare accelerometer profiles between individuals and to reduce the high dimension a functional summary of the profiles is used. We use the histogram as a functional summary due to its simplicity, suitability and ease of interpretation. Our model is an extension of generalised regression of scalars on functions or signal regression. It allows also multi-dimensional functional predictors and additive non-linear predictors for metric covariates. The additive multidimensional functional predictors allow investigating specific questions about whether the effect of PA varies over its intensity, by gender, by time of day or by day of the week. The key feature of the model is that it utilises the full profile of measured PA without requiring cut-points defining intensity levels for light, moderate and vigorous activity. We show that the (not necessarily causal) effect of PA is not linear and not constant over the activity intensity. Also, there is little evidence to suggest that the effect of PA intensity varies by gender or whether it happens on weekdays or on weekends.
We propose a versatile joint regression framework for count responses. The method is implemented in the R add-on package GJRM and allows for modelling linear and non-linear dependence through the use of several copulae. Moreover, the parameters of th
Wearable data is a rich source of information that can provide deeper understanding of links between human behaviours and human health. Existing modelling approaches use wearable data summarized at subject level via scalar summaries using regression
Real time monitoring using in situ sensors is becoming a common approach for measuring water quality within watersheds. High frequency measurements produce big data sets that present opportunities to conduct new analyses for improved understanding of
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work present
Topic modeling is a popular method used to describe biological count data. With topic models, the user must specify the number of topics $K$. Since there is no definitive way to choose $K$ and since a true value might not exist, we develop techniques