ﻻ يوجد ملخص باللغة العربية
We report Keck/HIRES and HST/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29-38 and GD 133. In G29-38, 8 elements are detected, including C, O, Mg, Si, Ca, Ti, Cr and Fe while in GD 133, O, Si, Ca and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted onto G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth.
Evidence is now compelling that most externally-polluted white dwarfs derive their heavy atoms by accretion from asteroids - the building blocks of rocky planets. Optical and ultraviolet spectroscopy of a small sample of suitable white dwarf stars sh
Using the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we have obtained high-resolution ultraviolet observations of GD 362 and PG 1225-079, two helium-dominated, externally-polluted white dwarfs. We determined or placed useful uppe
The existence of water in extrasolar planetary systems is of great interest as it constrains the potential for habitable planets and life. Here, we report the identification of a circumstellar disk that resulted from the destruction of a water-rich a
Multiple long and variable transits caused by dust from possibly disintegrating asteroids were detected in light curves of WD 1145+017. We present time-resolved spectroscopic observations of this target with QUCAM CCDs mounted in the Intermediate dis
Using ultraviolet spectra obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope, we extend our previous ground-based optical determinations of the composition of the extrasolar asteroids accreted onto two white dwarfs, GD 40 and