ﻻ يوجد ملخص باللغة العربية
Numerical simulations of flows are required for numerous applications, and are usually carried out using shallow water equations. We describe the FullSWOF software which is based on up-to-date finite volume methods and well-balanced schemes to solve this kind of equations. It consists of a set of open source C++ codes, freely available to the community, easy to use, and open for further development. Several features make FullSWOF particularly suitable for applications in hydrology: small water heights and wet-dry transitions are robustly handled, rainfall and infiltration are incorporated, and data from grid-based digital topographies can be used directly. A detailed mathematical description is given here, and the capabilities of FullSWOF are illustrated based on analytic solutions and datasets of real cases. The codes, available in 1D and
Overland flow on agricultural fields may have some undesirable effects such as soil erosion, flood and pollutant transport. To better understand this phenomenon and limit its consequences, we developed a code using state-of-the-art numerical methods:
We propose a variational form of the BDF2 method as an alternative to the commonly used minimizing movement scheme for the time-discrete approximation of gradient flows in abstract metric spaces. Assuming uniform semi-convexity --- but no smoothness
The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its avera
In this paper, we investigate the formation of singularity for general two dimensional and radially symmetric solutions for rotating shallow water system from different aspects. First, the formation of singularity is proved via the study for the asso
Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems