ﻻ يوجد ملخص باللغة العربية
Coalitional games serve the purpose of modeling payoff distribution problems in scenarios where agents can collaborate by forming coalitions in order to obtain higher worths than by acting in isolation. In the classical Transferable Utility (TU) setting, coalition worths can be freely distributed amongst agents. However, in several application scenarios, this is not the case and the Non-Transferable Utility setting (NTU) must be considered, where additional application-oriented constraints are imposed on the possible worth distributions. In this paper, an approach to define NTU games is proposed which is based on describing allowed distributions via a set of mixed-integer linear constraints applied to an underlying TU game. It is shown that such games allow non-transferable conditions on worth distributions to be specified in a natural and succinct way. The properties and the relationships among the most prominent solution concepts for NTU games that hold when they are applied on (mixed-integer) constrained games are investigated. Finally, a thorough analysis is carried out to assess the impact of issuing constraints on the computational complexity of some of these solution concepts.
A key question in cooperative game theory is that of coalitional stability, usually captured by the notion of the emph{core}--the set of outcomes such that no subgroup of players has an incentive to deviate. However, some coalitional games have empty
The research on coalitional games has focused on how to share the reward among a coalition such that players are incentivised to collaborate together. It assumes that the (deterministic or stochastic) characteristic function is known in advance. This
This study investigates simple games. A fundamental research question in this field is to determine necessary and sufficient conditions for a simple game to be a weighted majority game. Taylor and Zwicker (1992) showed that a simple game is non-weigh
Recent advancements in procedural content generation via machine learning enable the generation of video-game levels that are aesthetically similar to human-authored examples. However, the generated levels are often unplayable without additional edit
In this letter, we consider the Multi-Robot Efficient Search Path Planning (MESPP) problem, where a team of robots is deployed in a graph-represented environment to capture a moving target within a given deadline. We prove this problem to be NP-hard,