ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Transferable Utility Coalitional Games via Mixed-Integer Linear Constraints

291   0   0.0 ( 0 )
 نشر من قبل Gianluigi Greco
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Coalitional games serve the purpose of modeling payoff distribution problems in scenarios where agents can collaborate by forming coalitions in order to obtain higher worths than by acting in isolation. In the classical Transferable Utility (TU) setting, coalition worths can be freely distributed amongst agents. However, in several application scenarios, this is not the case and the Non-Transferable Utility setting (NTU) must be considered, where additional application-oriented constraints are imposed on the possible worth distributions. In this paper, an approach to define NTU games is proposed which is based on describing allowed distributions via a set of mixed-integer linear constraints applied to an underlying TU game. It is shown that such games allow non-transferable conditions on worth distributions to be specified in a natural and succinct way. The properties and the relationships among the most prominent solution concepts for NTU games that hold when they are applied on (mixed-integer) constrained games are investigated. Finally, a thorough analysis is carried out to assess the impact of issuing constraints on the computational complexity of some of these solution concepts.



قيم البحث

اقرأ أيضاً

A key question in cooperative game theory is that of coalitional stability, usually captured by the notion of the emph{core}--the set of outcomes such that no subgroup of players has an incentive to deviate. However, some coalitional games have empty cores, and any outcome in such a game is unstable. In this paper, we investigate the possibility of stabilizing a coalitional game by using external payments. We consider a scenario where an external party, which is interested in having the players work together, offers a supplemental payment to the grand coalition (or, more generally, a particular coalition structure). This payment is conditional on players not deviating from their coalition(s). The sum of this payment plus the actual gains of the coalition(s) may then be divided among the agents so as to promote stability. We define the emph{cost of stability (CoS)} as the minimal external payment that stabilizes the game. We provide general bounds on the cost of stability in several classes of games, and explore its algorithmic properties. To develop a better intuition for the concepts we introduce, we provide a detailed algorithmic study of the cost of stability in weighted voting games, a simple but expressive class of games which can model decision-making in political bodies, and cooperation in multiagent settings. Finally, we extend our model and results to games with coalition structures.
The research on coalitional games has focused on how to share the reward among a coalition such that players are incentivised to collaborate together. It assumes that the (deterministic or stochastic) characteristic function is known in advance. This paper studies a new setting (a task allocation problem) where the characteristic function is not known and it is controlled by some private information from the players. Hence, the challenge here is twofold: (i) incentivize players to reveal their private information truthfully, (ii) incentivize them to collaborate together. We show that existing reward distribution mechanisms or auctions cannot solve the challenge. Hence, we propose the very first mechanism for the problem from the perspective of both mechanism design and coalitional games.
This study investigates simple games. A fundamental research question in this field is to determine necessary and sufficient conditions for a simple game to be a weighted majority game. Taylor and Zwicker (1992) showed that a simple game is non-weigh ted if and only if there exists a trading transform of finite size. They also provided an upper bound on the size of such a trading transform, if it exists. Gvozdeva and Slinko (2011) improved that upper bound; their proof employed a property of linear inequalities demonstrated by Muroga (1971).In this study, we provide a new proof of the existence of a trading transform when a given simple game is non-weighted. Our proof employs Farkas lemma (1894), and yields an improved upper bound on the size of a trading transform. We also discuss an integer-weight representation of a weighted simple game, improving the bounds obtained by Muroga (1971). We show that our bound on the quota is tight when the number of players is less than or equal to five, based on the computational results obtained by Kurz (2012). Furthermore, we discuss the problem of finding an integer-weight representation under the assumption that we have minimal winning coalitions and maximal losing coalitions.In particular, we show a performance of a rounding method. Lastly, we address roughly weighted simple games. Gvozdeva and Slinko (2011) showed that a given simple game is not roughly weighted if and only if there exists a potent certificate of non-weightedness. We give an upper bound on the length of a potent certificate of non-weightedness. We also discuss an integer-weight representation of a roughly weighted simple game.
Recent advancements in procedural content generation via machine learning enable the generation of video-game levels that are aesthetically similar to human-authored examples. However, the generated levels are often unplayable without additional edit ing. We propose a generate-then-repair framework for automatic generation of playable levels adhering to specific styles. The framework constructs levels using a generative adversarial network (GAN) trained with human-authored examples and repairs them using a mixed-integer linear program (MIP) with playability constraints. A key component of the framework is computing minimum cost edits between the GAN generated level and the solution of the MIP solver, which we cast as a minimum cost network flow problem. Results show that the proposed framework generates a diverse range of playable levels, that capture the spatial relationships between objects exhibited in the human-authored levels.
In this letter, we consider the Multi-Robot Efficient Search Path Planning (MESPP) problem, where a team of robots is deployed in a graph-represented environment to capture a moving target within a given deadline. We prove this problem to be NP-hard, and present the first set of Mixed-Integer Linear Programming (MILP) models to tackle the MESPP problem. Our models are the first to encompass multiple searchers, arbitrary capture ranges, and false negatives simultaneously. While state-of-the-art algorithms for MESPP are based on simple path enumeration, the adoption of MILP as a planning paradigm allows to leverage the powerful techniques of modern solvers, yielding better computational performance and, as a consequence, longer planning horizons. The models are designed for computing optimal solutions offline, but can be easily adapted for a distributed online approach. Our simulations show that it is possible to achieve 98% decrease in computational time relative to the previous state-of-the-art. We also show that the distributed approach performs nearly as well as the centralized, within 6% in the settings studied in this letter, with the advantage of requiring significant less time - an important consideration in practical search missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا