ﻻ يوجد ملخص باللغة العربية
QCD factorization approach in the field-theoretic description of the semi-inclusive hadronic processes in the large Bjorken $x$ approximation implies extraction of the three-dimensional parton distribution functions as a convolution of a collinear jet function and soft transverse-distance dependent (TDD) function defined as a vacuum average of a partially light-like Wilson loop. The soft function can be interpreted, therefore, as an element of generalized loop space. A class of classically conformal-invariant transformations of the elements of this space is generated by the non-local area derivative operator which corresponds to a diffeomorphism in the loop space and determines equations of motion, the latter being associated with the rapidity evolution of the soft TDD functions. We propose a large-$x$ TDD factorization framework and discuss practical applications of this approach to the phenomenology of the TDDs accessible in future experimental programs at the Jefferson Lab 12 GeV and the Electron-Ion Collider.
We discuss possible applications of the equations of motion in the generalized Wilson loop space to the phenomenology of the three-dimensional parton distribution functions in the large-$x_B$ approximation. This regime is relevant for future experime
There is considerable controversy about the size and importance of nonperturbative contributions to the evolution of transverse-momentum-dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolut
We show that transverse-momentum-dependent parton distribution functions (TMDPDFs), important non-perturbative quantities for describing the properties of hadrons in high-energy scattering processes such as Drell-Yan and semi-inclusive deep-inelastic
I review some open questions relating to the large transverse momentum divergences in transverse moments of transverse momentum dependent (TMD) parton correlation func- tions. I also explain, in an abbreviated and summarized form, recent work that sh
Parton distribution functions (PDFs) are nonperturbative objects defined by nonlocal light-cone correlations. They cannot be computed directly from Quantum Chromodynamics (QCD). Using a standard lattice QCD approach, it is possible to compute moments