ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of antiferromagnetic order and hybridization gap by electron- and hole-doping in the Kondo semiconductor CeOs$_{2}$Al$_{10}$

351   0   0.0 ( 0 )
 نشر من قبل Kazunori Umeo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kondo semiconductor CeOs$_{2}$Al$_{10}$ exhibits an antiferromagnetic (AFM) order at $T_mathrm{N}= 28.5$ K, whose temperature is unexpectedly high for the small ordered moment of $0.3$ $mu_mathrm{B}/$Ce. We have studied the effects of electron- and hole-doping on the hybridization gap and AFM order by measuring the magnetization $M$, magnetic susceptibility $chi$, electrical resistivity $rho$, and specific heat $C$ on single crystals of Ce(Os$_{1-x}$Ir$_{x}$)$_{2}$Al$_{10}$($x le 0.15$) and Ce(Os$_{1-y}$Re$_{y}$)$_{2}$Al$_{10}$($y le 0.1$). The results of $M (B)$ indicates that the AFM ordered moment $mu_mathrm{AF}$ changes the direction from the $c$-axis for $x = 0$ to the $a$-axis for $x = 0.03$. With increasing $x$ up to 0.15, $T_mathrm{N}$ gradually decreases although the $4f$ electron state becomes localized and the magnitude of $mu_mathrm{AF}$ is increased to $1$ $mu_mathrm{B}/$Ce. With increasing $y$, the $4f$ electron state is more delocalized and the AFM order disappears at a small doping level $y = 0.05$. In both electron- and hole-doped systems, the suppression of $T_mathrm{N}$ is well correlated with the increase of the Sommerfeld coefficient $gamma$ in $C(T)$. Furthermore, the simultaneous suppression of $T_mathrm{N}$ and the semiconducting gap in $rho (T)$ at $T > T_mathrm{N}$ indicates that the presence of the hybridization gap is indispensable for the unusual AFM order in CeOs$_{2}$Al$_{10}$.



قيم البحث

اقرأ أيضاً

The effects of electron (Ir) and hole (Re) doping on the hybridization gap and antiferromagnetic order have been studied by magnetization, muon spin relaxation ($mu^+$SR), and inelastic neutron scattering on the polycrystalline samples of Ce(Os$_{1-x }$Ir$_x$)$_2$Al$_{10}$ ($x$ = 0.08 and 0.15) and CeOs$_{1.94}$Re$_{0.06}$Al$_{10}$. $mu^+$SR spectra clearly reveals magnetic ordering below 20 and 10 K for $x$ = 0.08 and 0.15 samples respectively with a very weak signature of oscillations of the muon initial asymmetry at very short time scale. Our important findings are that small amount of electron doping (i) completely suppress the inelastic magnetic excitations near 11 meV down to 2K, which were observed in the undoped compound, and the response transforms into a broad quasielastic response and (ii) the internal field at the corresponding muon site is remarkably enhanced by about ten times compared with the parent compound. On the other hand with small amount of hole (3% Re) doping the intensity of the inelastic magnetic excitations near 11 meV is reduced significantly. The main origin of the observed doping effect is an extra 5$d$ electrons being carried by Ir and a hole carried by Re compared with that the Os atom. The obtained results demonstrate a great sensitivity of the carrier doping and provides additional ways to study their anomalous magnetic properties.
Here we present linear and circular polarized soft x-ray absorption spectroscopy (XAS) data at the Ce $M_{4,5}$ edges of the electron (Ir) and hole-doped (Re) Kondo semiconductor CeOs$_2$Al$_{10}$. Both substitutions have a strong impact on the unusu al high N$acute{e}$el temperature, $T_N$=28.5,K, and also the direction of the ordered moment in case of Ir. The substitution dependence of the linear dichroism is weak thus validating the crystal-field description of CeOs$_2$Al$_{10}$ being representative for the Re and Ir substituted compounds. The impact of electron- and hole-doping on the hybridization between conduction and 4$f$ electrons is related to the amount of $f^0$ in the ground state and reduction of x-ray magnetic circular dichroism. A relationship of $cf$-hybridization strength and enhanced $T_N$ is discussed. The direction and doping dependence of the circular dichroism is in agreement with strong Kondo screening along the crystallographic $a$ direction.
Magnetic ground state of Rh-doped Kondo semiconductor CeRu$_2$Al$_{10}$ [Ce(Ru$_{1-x}$Rh$_x$)$_2$Al$_{10}$] is investigated by muon-spin relaxation method. Muon-spin precession with two frequencies is observed in the $x$ = 0 sample, while only one fr equency is present in the $x$ = 0.05 and 0.1 samples, which is attributed to the broad static field distribution at the muon site. The internal field at the muon site is enhanced from about 180 G in $x$ = 0 sample to about 800 G in the Rh-doped samples, supporting the spin-flop transition as suggested by macroscopic measurements, and the boundary of different magnetic ground states is identified around $x$ = 0.03. The drastic change of magnetic ground state by a small amount of Rh-doping (3%) indicates that the magnetic structure in CeRu$_2$Al$_{10}$ is not robust and can be easily tuned by external perturbations such as electron doping. The anomalous temperature dependence of internal field in CeRu$_2$Al$_{10}$ is suggested to be attributed to the hyperfine interaction between muons and conduction electrons.
An anisotropic Kondo semiconductor CeOs$_2$Al$_{10}$ exhibits an unusual antiferromagnetic order at rather high transition temperature $T_0$ of 28.5 K. Two possible origins of the magnetic order have been proposed so far, one is the Kondo coupling of the hybridization between the conduction ($c$) and the $4f$ states and the other is the charge-density wave/charge ordering along the orthorhombic $b$ axis. To clarify the origin of the magnetic order, we have investigated the electronic structure of hole- and electron-doped CeOs$_2$Al$_{10}$ [Ce(Os$_{1-y}$Re$_y$)$_2$Al$_{10}$ and Ce(Os$_{1-x}$Ir$_x$)$_2$Al$_{10}$, respectively] by using optical conductivity spectra along the $b$ axis. The intensity of the $c$-$f$ hybridization gap at $hbaromegasim50$ meV continuously decreases from $y=0.10$ to $x=0.12$ via $x=y=0$. The intensity of the charge excitation observed at $hbaromegasim20$ meV has the maximum at $x=y=0$ as similar with the doping dependence of $T_{rm 0}$. The fact that the charge excitation is strongly related to the magnetic order strengthens the possibility of the charge density wave/charge ordering as the origin of the magnetic order.
X-ray diffraction, electrical resistivity, magnetization, specific heat, and thermoelectric power measurements are presented for single crystals of the new filled skutterudite compound {CeOsAs}, which reveal phenomena that are associated with f - ele ctron - conduction electron hybridization. Valence fluctuations or Kondo behavior dominates the physics down to $T$ $sim$ 135 K. The correlated electron behavior is manifested at low temperatures as a hybridization gap insulating state. The small energy gap $Delta$$_1$/k$_B$ $sim$ 73 K, taken from fits to electrical resistivity data, correlates with the evolution of a weakly magnetic or nonmagnetic ground state, which is evident in the magnetization data below a coherence temperature $T$$_{coh}$ $sim$ 45 K. Additionally, the low temperature electronic specific heat coefficient is small, $gamma$ $sim$ 19 mJ/mol K$^2$. Some results for the nonmagnetic analogue compound {LaOsAs} are also presented for comparison purposes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا