ﻻ يوجد ملخص باللغة العربية
We experimentally observe a spontaneous temporal symmetry breaking instability in a coherently-driven passive optical Kerr resonator. The cavity is synchronously pumped by time-symmetric pulses yet we report output pulses with strongly asymmetric temporal and spectral intensity profiles, with up to 71% of the energy on the same side of the pump center frequency. The instability occurs above a certain pump power threshold but remarkably vanishes above a second threshold, in excellent agreement with theory. We also observe a generalized bistability in which an asymmetric output state coexists with a symmetric one in the same pumping conditions.
Dissipative solitons are self-localised structures that can persist indefinitely in open systems characterised by continual exchange of energy and/or matter with the environment. They play a key role in photonics, underpinning technologies from mode-
The realization of spontaneous symmetry breaking (SSB) requires a system that exhibits a near perfect symmetry. SSB manifests itself through a pitchfork bifurcation, but that bifurcation is fragile, and perturbed by any asymmetry or imperfections. Co
We study the behavior of spinless fermions in superconducting state, in which the phases of the superconducting order parameter depend on the direction of the link. We find that the energy of the superconductor depends on the phase differences of the
When matter undergoes a phase transition from one state to another, usually a change in symmetry is observed, as some of the symmetries exhibited are said to be spontaneously broken. The superconducting phase transition in the underdoped high-Tc supe
We have investigated the superconducting state of the non-centrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation/rotation (muSR) measurements. Re6Zr has a superconducting transition temperature, Tc = 6.75 K. Trans