ﻻ يوجد ملخص باللغة العربية
We report the first direct spectroscopic evidence for coherent electronic coupling between excitons and trions in atomically thin transition metal dichalcogenides, specifically monolayer MoSe2. Signatures of coupling appear as isolated cross-peaks in two-color pump-probe spectra, and the lineshape of the peaks reveals that the coupling originates from many-body interactions. Excellent agreement between the experiment and density matrix calculations suggests the formation of a correlated exciton-trion state due to their coupling.
We present a detailed investigation of the exciton and trion dynamics in naturally doped MoSe2 and WSe2 single atomic layers as a function of temperature in the range 10-300K under above band-gap laser excitation. By combining time-integrated and tim
Atomically thin MoS$_{2}$ crystals have been recognized as a quasi-2D semiconductor with remarkable physics properties. This letter reports our Raman scattering measurements on multilayer and monolayer MoS$_{2}$, especially in the low-frequency range
The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in si
Motivated by the triumph and limitation of graphene for electronic applications, atomically thin layers of group VI transition metal dichalcogenides are attracting extensive interest as a class of graphene-like semiconductors with a desired band-gap