ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian data augmentation dose finding with continual reassessment method and delayed toxicity

174   0   0.0 ( 0 )
 نشر من قبل Suyu Liu
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A major practical impediment when implementing adaptive dose-finding designs is that the toxicity outcome used by the decision rules may not be observed shortly after the initiation of the treatment. To address this issue, we propose the data augmentation continual reassessment method (DA-CRM) for dose finding. By naturally treating the unobserved toxicities as missing data, we show that such missing data are nonignorable in the sense that the missingness depends on the unobserved outcomes. The Bayesian data augmentation approach is used to sample both the missing data and model parameters from their posterior full conditional distributions. We evaluate the performance of the DA-CRM through extensive simulation studies and also compare it with other existing methods. The results show that the proposed design satisfactorily resolves the issues related to late-onset toxicities and possesses desirable operating characteristics: treating patients more safely and also selecting the maximum tolerated dose with a higher probability. The new DA-CRM is illustrated with two phase I cancer clinical trials.



قيم البحث

اقرأ أيضاً

A utility-based Bayesian population finding (BaPoFi) method was proposed by Morita and Muller (2017, Biometrics, 1355-1365) to analyze data from a randomized clinical trial with the aim of identifying good predictive baseline covariates for optimizin g the target population for a future study. The approach casts the population finding process as a formal decision problem together with a flexible probability model using a random forest to define a regression mean function. BaPoFi is constructed to handle a single continuous or binary outcome variable. In this paper, we develop BaPoFi-TTE as an extension of the earlier approach for clinically important cases of time-to-event (TTE) data with censoring, and also accounting for a toxicity outcome. We model the association of TTE data with baseline covariates using a semi-parametric failure time model with a Polya tree prior for an unknown error term and a random forest for a flexible regression mean function. We define a utility function that addresses a trade-off between efficacy and toxicity as one of the important clinical considerations for population finding. We examine the operating characteristics of the proposed method in extensive simulation studies. For illustration, we apply the proposed method to data from a randomized oncology clinical trial. Concerns in a preliminary analysis of the same data based on a parametric model motivated the proposed more general approach.
By listening to gravity in the low frequency band, between 0.1 mHz and 1 Hz, the future space-based gravitational-wave observatory LISA will be able to detect tens of thousands of astrophysical sources from cosmic dawn to the present. The detection a nd characterization of all resolvable sources is a challenge in itself, but LISA data analysis will be further complicated by interruptions occurring in the interferometric measurements. These interruptions will be due to various causes occurring at various rates, such as laser frequency switches, high-gain antenna re-pointing, orbit corrections, or even unplanned random events. Extracting long-lasting gravitational-wave signals from gapped data raises problems such as noise leakage and increased computational complexity. We address these issues by using Bayesian data augmentation, a method that reintroduces the missing data as auxiliary variables in the sampling of the posterior distribution of astrophysical parameters. This provides a statistically consistent way to handle gaps while improving the sampling efficiency and mitigating leakage effects. We apply the method to the estimation of galactic binaries parameters with different gap patterns, and we compare the results to the case of complete data.
We propose BaySize, a sample size calculator for phase I clinical trials using Bayesian models. BaySize applies the concept of effect size in dose finding, assuming the MTD is defined based on an equivalence interval. Leveraging a decision framework that involves composite hypotheses, BaySize utilizes two prior distributions, the fitting prior (for model fitting) and sampling prior (for data generation), to conduct sample size calculation under desirable statistical power. Look-up tables are generated to facilitate practical applications. To our knowledge, BaySize is the first sample size tool that can be applied to a broad range of phase I trial designs.
The matter density is an important knowledge for today cosmology as many phenomena are linked to matter fluctuations. However, this density is not directly available, but estimated through lensing maps or galaxy surveys. In this article, we focus on galaxy surveys which are incomplete and noisy observations of the galaxy density. Incomplete, as part of the sky is unobserved or unreliable. Noisy as they are count maps degraded by Poisson noise. Using a data augmentation method, we propose a two-step method for recovering the density map, one step for inferring missing data and one for estimating of the density. The results show that the missing areas are efficiently inferred and the statistical properties of the maps are very well preserved.
The aim of this paper is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. Our STMs include a vary ing Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov Random Field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا