ترغب بنشر مسار تعليمي؟ اضغط هنا

High-performance solution of the transport problem in a graphene armchair structure with a generic potential

38   0   0.0 ( 0 )
 نشر من قبل Paolo Marconcini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an efficient numerical method to study the transport properties of armchair graphene ribbons in the presence of a generic external potential. The method is based on a continuum envelope-function description with physical boundary conditions. The envelope functions are computed in the reciprocal space, and the transmission is then obtained with a recursive scattering matrix approach. This allows a significant reduction of the computational time with respect to finite difference simulations.

قيم البحث

اقرأ أيضاً

In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature to enable novel graphene-based electronics. Successful synthesis of GNRs has triggered efforts to realize field-effect transistors (FETs) bas ed on single ribbons. Despite great progress, reliable and reproducible fabrication of single-ribbon FETs is still a challenge that impedes applications and the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on a network of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with unprecedented conductivity. We show formation of reliable Ohmic contacts and a yield of functional FETs close to unity by lamination of GNRs on the electrodes. Modeling the charge carrier transport in the networks reveals that this process is governed by inter-ribbon hopping mediated by nuclear tunneling, with a hopping length comparable to the physical length of the GNRs. Furthermore, we demonstrate that nuclear tunneling is a general charge transport characteristic of the GNR networks by using two different GNRs. Overcoming the challenge of low-yield single-ribbon transistors by the networks and identifying the corresponding charge transport mechanism puts GNR-based electronics in a new perspective.
Using a general symmetry-based approach, we provide a classification of generic miniband structures for electrons in graphene placed on substrates with the hexagonal Bravais symmetry. In particular, we identify conditions at which the first moire min iband is separated from the rest of the spectrum by either one or a group of three isolated mini Dirac points and is not obscured by dispersion surfaces coming from other minibands. In such cases the Hall coefficient exhibits two distinct alternations of its sign as a function of charge carrier density.
42 - W. Zhu , M. L. Liang , Q. W. Shi 2008
In this paper, we numerically study the bound electron states induced by long range Coulomb impurity in gapped graphene and the quasi-bound states in supercritical region based on the lattice model. We present a detailed comparison between our numeri cal simulations and the prediction of the continuum model which is described by the Dirac equation in (2+1)-dimensional Quantum Electrodynamics (QED). We also use the Fanos formalism to investigate the quasi-bound state development and design an accessible experiments to test the decay of the supercritical vacuum in the gapped graphene.
We investigate the electronic band structure of an undoped graphene armchair nanoribbon. We demonstrate that such nanoribbon always has a gap in its electronic spectrum. Indeed, even in the situations where simple single-electron calculations predict a metallic dispersion, the system is unstable with respect to the deformation of the carbon-carbon bonds dangling at the edges of the armchair nanoribbon. The edge bonds deformation couples electron and hole states with equal momentum. This coupling opens a gap at the Fermi level. In a realistic sample, however, it is unlikely that this instability could be observed in its pure form. Namely, since chemical properties of the dangling carbon atoms are different from chemical properties of the atoms inside the sample (for example, the atoms at the edge have only two neighbours, besides additional non-carbon atoms might be attached to passivate unpaired covalent carbon bonds), it is very probable that the bonds at the edge are deformed due to chemical interactions. This chemically-induced modification of the nanoribbons edges can be viewed as an effective field biasing our predicted instability in a particular direction. Yet by disordering this field (e.g., through random substitution of the radicals attached to the edges) we may tune the system back to the critical regime and vary the electronic properties of the system. For example, we show that electrical transport through a nanoribbon is strongly affected by such disorder.
Wrinkling is a ubiquitous phenomenon in two-dimensional membranes. In particular, in the large-scale growth of graphene on metallic substrates, high densities of wrinkles are commonly observed. Despite their prevalence and potential impact on large-s cale graphene electronics, relatively little is known about their structural morphology and electronic properties. Surveying the graphene landscape using atomic force microscopy, we found that wrinkles reach a certain maximum height before folding over. Calculations of the energetics explain the morphological transition, and indicate that the tall ripples are collapsed into narrow standing wrinkles by van der Waals forces, analogous to large-diameter nanotubes. Quantum transport calculations show that conductance through these collapsed wrinkle structures is limited mainly by a density-of-states bottleneck and by interlayer tunneling across the collapsed bilayer region. Also through systematic measurements across large numbers of devices with wide folded wrinkles, we find a distinct anisotropy in their electrical resistivity, consistent with our transport simulations. These results highlight the coupling between morphology and electronic properties, which has important practical implications for large-scale high-speed graphene electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا