ترغب بنشر مسار تعليمي؟ اضغط هنا

Importance of Tides for Periastron Precession in Eccentric Neutron Star - White Dwarf Binaries

205   0   0.0 ( 0 )
 نشر من قبل Niharika Sravan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Niharika Sravan




اسأل ChatGPT حول البحث

Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141-6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the WD component mass inferred and, in some cases, will prevent us from misclassifying the object. However, such systems are rare due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.

قيم البحث

اقرأ أيضاً

124 - Anthony L. Piro 2019
Tidal interactions can play an important role as compact white dwarf (WD) binaries are driven together by gravitational waves (GWs). This will modify the strain evolution measured by future space-based GW detectors and impact the potential outcome of the mergers. Surveys now and in the near future will generate an unprecedented population of detached WD binaries to constrain tidal interactions. Motivated by this, I summarize the deviations between a binary evolving under the influence of only GW emission and a binary that is also experiencing some degree of tidal locking. I present analytic relations for the first and second derivative of the orbital period and braking index. Measurements of these quantities will allow the inference of tidal interactions, even when the masses of the component WDs are not well constrained. Finally, I discuss tidal heating and how it can provide complimentary information.
In this paper we consider the population of eccentric binaries with a neutron star and a white dwarf that has been revealed in our galaxy in recent years through binary pulsar observations. We apply our statistical analysis method (Kim, Kalogera, & L orimer 2003)and calculate the Galactic formation rate of these binaries empirically. We then compare our results with rate predictions based on binary population synthesis from various research groups and for various ranges of model input parameters. For our reference moel, we find the Galactic formation rate of these eccentric systems to be ~7 per Myr, about an order of magnitude smaller than results from binary evolution estimations. However, the empirical estimates are calculated with no correction for pulsar beaming, and therefore they should be taken as lower limits. Despite uncertainties that exceed an order of magnitude, there is significant overlap of the various rate calculations. This consistency lends confidence that our current understanding of the formation of these eccentric NS-WD binaries is reasonable.
We study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clus ters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 solar mass helium white dwarf in binaries with orbital frequencies in the LISA gravitational wave frequency band and companion masses ranging from 0.3 to 10^5 solar masses. The resulting tidal evolution time scales for the orbital semi-major axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on time scales of less than 10Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on time scales of less than 1Myr. Nevertheless, the time scales remain longer than the orbital inspiral time scales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.
We study the effect of tidal forcing on gravitational wave signals from tidally relaxed white dwarf pairs in the LISA, DECIGO and BBO frequency band ($0.1-100,{rm mHz}$). We show that for stars not in hydrostatic equilibrium (in their own rotating fr ames), tidal forcing will result in energy and angular momentum exchange between the orbit and the stars, thereby deforming the orbit and producing gravitational wave power in harmonics not excited in perfectly circular synchronous binaries. This effect is not present in the usual orbit-averaged treatment of the equilibrium tide, and is analogous to transit timing variations in multiplanet systems. It should be present for all LISA white dwarf pairs since gravitational waves carry away angular momentum faster than tidal torques can act to synchronize the spins, and when mass transfer occurs as it does for at least eight LISA verification binaries. With the strain amplitudes of the excited harmonics depending directly on the density profiles of the stars, gravitational wave astronomy offers the possibility of studying the internal structure of white dwarfs, complimenting information obtained from asteroseismology of pulsating white dwarfs. Since the vast majority of white-dwarf pairs in this frequency band are expected to be in the quasi-circular state, we focus here on these binaries, providing general analytic expressions for the dependence of the induced eccentricity and strain amplitudes on the stellar apsidal motion constants and their radius and mass ratios. Tidal dissipation and gravitation wave damping will affect the results presented here and will be considered elsewhere.
A number of binary systems present evidence of enhanced activity around periastron passage, suggesting a connection between tidal interactions and these periastron effects. The aim of this investigation is to study the time-dependent response of a st ars surface as it is perturbed by a binary companion. We derive expressions for the rate of dissipation, $dot{E}$, of the kinetic energy by the viscous flows driven by tidal interactions on the surface layer. The method is tested by comparing the results from a grid of model calculations with the analytical predictions of Hut (1981) and the synchronization timescales of Zahn (1977, 2008). Our results for the orbital cycle averaged energy dissipation on orbital separation are consistent with those of Hut for model binaries with orbital separations at periastron >8 stellar radii. The model also reproduces the predicted pseudo-synchronization angular velocity for moderate eccentricities and the same scaling of synchronization timescales for circular orbits with separation as given by Zahn. The computations gives the distribution of $dot{E}$ over the stellar surface, and show that it is generally concentrated at the equatorial latitude, with maxima generally located around four clearly defined longitudes, corresponding to the fastest azimuthal velocity perturbations. Maximum amplitudes occur around periastron passage or slightly thereafter for supersynchronously rotating stars. In very eccentric binaries, the distribution of $dot{E}$ over the surface changes significantly as a function of orbital phase, with small spatial structures appearing after periastron. An exploratory calculation for the highly eccentric binary system delta Sco suggests that the sudden and large amplitude variations in surface properties around periastron may contribute toward the activity observed around this orbital phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا