ﻻ يوجد ملخص باللغة العربية
We study the quasinormal modes of fermionic perturbations for an asymptotically Lifshitz black hole in 4-dimensions with dynamical exponent z=2 and plane topology for the transverse section, and we find analytically and numerically the quasinormal modes for massless fermionic fields by using the improved asymptotic iteration method and the Horowitz-Hubeny method. The quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under massless fermionic field perturbations. Remarkably, both numerical methods yield consistent results; i.e., both methods converge to the exact quasinormal frequencies; however, the improved asymptotic iteration method converges in a fewer number of iterations. Also, we find analytically the quasinormal modes for massive fermionic fields for the mode with lowest angular momentum. In this case, the quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under fermionic field perturbations. Moreover, we show that the lowest quasinormal frequencies have real and imaginary parts for the mode with higher angular momentum by using the improved asymptotic iteration method.
In a D-dimensional Lifshitz black hole we calculate exactly the quasinormal frequencies of a test Dirac field in the massless and zero angular eigenvalue limits. These results are an extension of the previous calculations in which the quasinormal fre
Motivated by the recent interest in the study of the spacetimes that are asymptotically Lifshitz and in order to extend some previous results, we calculate exactly the quasinormal frequencies of the electromagnetic field in a D-dimensional asymptotic
For a two-dimensional black hole we determine the quasinormal frequencies of the Klein-Gordon and Dirac fields. In contrast to the well known examples whose spectrum of quasinormal frequencies is discrete, for this black hole we find a continuous spe
We study scalar perturbations for a four-dimensional asymptotically Lifshitz black hole in conformal gravity with dynamical exponent z=0, and spherical topology for the transverse section, and we find analytically and numerically the quasinormal mode
In this article we show that the asymptotic iteration method (AIM) allows one to numerically find the quasinormal modes of Schwarzschild and Schwarzschild de Sitter (SdS) black holes. An added benefit of the method is that it can also be used to calc