ترغب بنشر مسار تعليمي؟ اضغط هنا

Transfer reactions in inverse kinematics, an experimental approach for fission investigations

69   0   0.0 ( 0 )
 نشر من قبل Carme Rodriguez-Tajes
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic and multi-nucleon transfer reactions between a $^{238}$U beam, accelerated at 6.14 MeV/u, and a $^{12}$C target were used for the production of neutron-rich, fissioning systems from U to Cm. A Si telescope, devoted to the detection of the target-like nuclei, provided a characterization of the fissioning systems in atomic and mass numbers, as well as in excitation energy. Cross-sections, angular and excitation-energy distributions were measured for the inelastic and transfer channels. Possible excitations of the target-like nuclei were experimentally investigated for the first time, by means of g -ray measurements. The decays from the first excited states of $^{12}$C, $^{11}$B and $^{10}$Be were observed with probabilities of 0.12 - 0.14, while no evidence for the population of higher-lying states was found. Moreover, the fission probabilities of $^{238}$U, $^{239}$Np and $^{240,241,242}$Pu and $^{244}$Cm were determined as a function of the excitation energy.

قيم البحث

اقرأ أيضاً

A novel method to access the complete identification in atomic number Z and mass A of fragments produced in low-energy fission of actinides is presented. This method, based on the use of multi- nucleon transfer and fusion reactions in inverse kinemat ics, is applied in this work to reactions between a 238U beam and a 12C target to produce and induce fission of moderately excited actinides. The fission fragments are detected and fully identified with the VAMOS spectrometer of GANIL, allowing the measurement of fragment yields of several hundreds of isotopes in a range between A ~ 80 and ~ 160, and from Z ~ 30 to ~ 64. For the first time, complete isotopic yield distributions of fragments from well-defined fissioning systems are available. Together with the precise measurement of the fragment emission angles and velocities, this technique gives further insight into the nuclear-fission process.
The systematic study of fission fragment yields under different initial conditions provides a valuable experimental benchmark for fission models that aim to understand this complex decay channel and to predict reaction product yields. Inverse kinemat ics coupled to the use of a high-resolution spectrometer is shown to be a powerful tool to identify and measure the inclusive isotopic yields of fission fragments. In-flight fusion fission was used to produce secondary beams of neutron-rich isotopes in the collision of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment-separator. Unique A,Z,q identification of fission products was attained with the dE-TKE-Brho-ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions that show the importance of different reaction mechanisms for these two targets.
Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.
154 - Takatoshi Ichikawa 2015
To describe fusion hindrance observed in fusion reactions at extremely low incident energies, I propose a novel extension of the standard CC model by introducing a damping factor that describes a smooth transition from sudden to adiabatic processes. I demonstrate the performance of this model by systematically investigating various deep sub-barrier fusion reactions. I extend the standard CC model by introducing a damping factor into the coupling matrix elements in the standard CC model. I adopt the Yukawa-plus-exponential (YPE) model as a basic heavy ion-ion potential, which is advantageous for a unified description of the one- and two-body potentials. For the purpose of these systematic investigations, I approximate the one-body potential with a third-order polynomial function based on the YPE model. Calculated fusion cross sections for the medium-heavy mass systems of $^{64}$Ni + $^{64}$Ni, $^{58}$Ni + $^{58}$Ni, and $^{58}$Ni + $^{54}$Fe, the medium-light mass systems of $^{40}$Ca + $^{40}$Ca, $^{48}$Ca + $^{48}$Ca, and $^{24}$Mg + $^{30}$Si, and the mass-asymmetric systems of $^{48}$Ca + $^{96}$Zr and $^{16}$O + $^{208}$Pb are consistent with the experimental data. The astrophysical S factor and logarithmic derivative representations of these are also in good agreement with the experimental data. Since the results calculated with the damping factor are in excellent agreement with the experimental data in all systems, I conclude that the smooth transition from the sudden to adiabatic processes occurs and that a coordinate-dependent coupling strength is responsible for the fusion hindrance. In all systems, the potential energies at the touching point $V_{rm Touch}$ strongly correlate with the incident threshold energies for which the fusion hindrance starts to emerge, except for the medium-light mass systems.
The fission fragment mass distributions have been measured in the reactions 16O + 184W and 19F+ 181Ta populating the same compound nucleus 200Pb? at similar excitation energies. It is found that the widths of the mass distribution increases monotonic ally with excitation energy, indicating the absence of quasi-fission for both reactions. This is contrary to two recent claims of the presence of quasi-fission in the above mentioned reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا