ترغب بنشر مسار تعليمي؟ اضغط هنا

Rydberg dressing: Understanding of collective many-body effects and implications for experiments

145   0   0.0 ( 0 )
 نشر من قبل Jonathan B. Balewski
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The strong interaction between Rydberg atoms can be used to control the strength and character of the interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Elaborate theoretical proposals for the realization of various complex phases and applications in quantum simulation exist. Also a simple model has been already developed that describes the basic idea of Rydberg dressing in a two-atom basis. However, an experimental realization has been elusive so far. We present a model describing the ground state of a Bose-Einstein condensate dressed with a Rydberg level based on the Rydberg blockade. This approach provides an intuitive understanding of the transition from pure twobody interaction to a regime of collective interactions. Furthermore it enables us to calculate the deformation of a three-dimensional sample under realistic experimental conditions in mean-field approximation. We compare full three-dimensional numerical calculations of the ground state to an analytic expression obtained within Thomas-Fermi approximation. Finally we discuss limitations and problems arising in an experimental realization of Rydberg dressing based on our experimental results. Our work enables the reader to straight forwardly estimate the experimental feasibility of Rydberg dressing in realistic three-dimensional atomic samples.



قيم البحث

اقرأ أيضاً

Over the last decade, systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems, in particular spin systems. Here, w e review the techniques underlying quantum gas microscopes and arrays of optical tweezers used in these experiments, explain how the different types of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models, and describe recent results that were obtained with this platform to study quantum many-body physics.
We study the ground state properties and nonequilibrium dynamics of two spinor bosonic impurities immersed in a one-dimensional bosonic gas upon applying an interspecies interaction quench. For the ground state of two non-interacting impurities we re veal signatures of attractive induced interactions in both cases of attractive or repulsive interspecies interactions, while a weak impurity-impurity repulsion forces the impurities to stay apart. Turning to the quench dynamics we inspect the time-evolution of the contrast unveiling the existence, dynamical deformation and the orthogonality catastrophe of Bose polarons. We find that for an increasing postquench repulsion the impurities reside in a superposition of two distinct two-body configurations while at strong repulsions their corresponding two-body correlation patterns show a spatially delocalized behavior evincing the involvement of higher excited states. For attractive interspecies couplings, the impurities exhibit a tendency to localize at the origin and remarkably for strong attractions they experience a mutual attraction on the two-body level that is imprinted as a density hump on the bosonic bath.
Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing which combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying Rydberg levels provides a system where strong and long-range interactions between pairs of excited ions can be engineered and tuned via external laser fields. We show that the coupling between Rydberg pair interactions and collective motional modes gives rise to effective long-range multi-body interactions, consisting of two, three, and four-body terms. Their shape, strength, and range can be controlled via the ion trap parameters and strongly depends on both the equilibrium configuration and vibrational modes of the ion crystal. By focusing on an experimentally feasible quasi one-dimensional setup of $ {}^{88}mathrm{Sr}^+ $ Rydberg ions, we demonstrate that multi-body interactions are enhanced by the emergence of a soft mode associated, e.g., with a structural phase transition. This has a striking impact on many-body electronic states and results, for example, in a three-body anti-blockade effect. Our study shows that trapped Rydberg ions offer new opportunities to study exotic many-body quantum dynamics driven by enhanced multi-body interactions.
We investigate quantum many-body effects on Rydberg excitons in cuprous oxide induced by the surrounding electron-hole plasma. Line shifts and widths are calculated by full diagonalisation of the plasma Hamiltonian and compared to results in first or der perturbation theory, and the oscillator strength of the exciton lines is analysed.
This review explores the dynamics and the low-energy excitation spectra of Bose-Einstein condensates (BECs) of interacting bosons in external potential traps putting particular emphasis on the emerging many-body effects beyond mean-field descriptions . To do so, methods have to be used that, in principle, can provide numerically exact results for both the dynamics and the excitation spectra in a systematic manner. Numerically exact results for the dynamics are presented employing the well-established multicongurational time-dependent Hartree for bosons (MCTDHB) method. The respective excitation spectra are calculated utilizing the more recently introduced linear-response theory atop it (LR-MCTDHB). The latter theory gives rise to an, in general, non-hermitian eigenvalue problem. The theory and its newly developed implementation are described in detail and benchmarked towards the exactly-solvable harmonic-interaction model. Several applications to BECs in one- and two-dimensional potential traps are discussed. With respect to dynamics, it is shown that both the out-of-equilibrium tunneling dynamics and the dynamics of trapped vortices are of many-body nature. Furthermore, many-body effects in the excitation spectra are presented for BECs in different trap geometries. It is demonstrated that even for essentially-condensed systems, the spectrum of the lowest-in-energy excitations computed at the many-body level can differ substantially from the standard mean-field description. In general, it is shown that bosons carrying angular momentum are more sensitive to many-body effects than bosons without. These effects are present in both the dynamics and the excitation spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا