ﻻ يوجد ملخص باللغة العربية
We investigate the collective dynamics of excitatory-inhibitory excitable networks in response to external stimuli. How to enhance dynamic range, which represents the ability of networks to encode external stimuli, is crucial to many applications. We regard the system as a two-layer network (E-Layer and I-Layer) and explore the criticality and dynamic range on diverse networks. Interestingly, we find that phase transition occurs when the dominant eigenvalue of E-layers weighted adjacency matrix is exactly one, which is only determined by the topology of E-Layer. Meanwhile, it is shown that dynamic range is maximized at critical state. Based on theoretical analysis, we propose an inhibitory factor for each excitatory node. We suggest that if nodes with high inhibitory factors are cut out from I-Layer, dynamic range could be further enhanced. However, because of the sparseness of networks and passive function of inhibitory nodes, the improvement is relatively small compared tooriginal dynamic range. Even so, this provides a strategy to enhance dynamic range.
Dynamic excitatory-inhibitory (E-I) balance is a paradigmatic mechanism invoked to explain the irregular low firing activity observed in the cortex. However, we will show that the E-I balance can be at the origin of other regimes observable in the br
It is widely appreciated that well-balanced excitation and inhibition are necessary for proper function in neural networks. However, in principle, such balance could be achieved by many possible configurations of excitatory and inhibitory strengths,
We study the strategy to optimally maximize the dynamic range of excitable networks by removing the minimal number of links. A network of excitable elements can distinguish a broad range of stimulus intensities and has its dynamic range maximized at
Maximum Entropy models can be inferred from large data-sets to uncover how collective dynamics emerge from local interactions. Here, such models are employed to investigate neurons recorded by multielectrode arrays in the human and monkey cortex. Tak
Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinit