ترغب بنشر مسار تعليمي؟ اضغط هنا

Extensive study of HD 25558, a long-period double-lined binary with two SPB components

128   0   0.0 ( 0 )
 نشر من قبل Adam S\\'odor
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out an extensive observational study of the Slowly Pulsating B (SPB) star, HD 25558. The ~2000 spectra obtained at different observatories, the ground-based and MOST satellite light curves revealed that this object is a double-lined spectroscopic binary with an orbital period of about 9 years. The observations do not allow the inference of an orbital solution. We determined the physical parameters of the components, and found that both lie within the SPB instability strip. Accordingly, both show line-profile variations due to stellar pulsations. Eleven independent frequencies were identified in the data. All the frequencies were attributed to one of the two components based on Pixel-by-pixel variability analysis of the line profiles. Spectroscopic and photometric mode identification was also performed for the frequencies of both stars. These results suggest that the inclination and rotation of the two components are rather different. The primary is a slow rotator with ~6 d period, seen at ~60 deg inclination, while the secondary rotates fast with ~1.2 d period, and is seen at ~20 inclination. Spectropolarimetric measurements revealed that the secondary component has a magnetic field with at least a few hundred Gauss strength, while no magnetic field can be detected in the primary.

قيم البحث

اقرأ أيضاً

R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new Xshooter multi-epoch spectroscopy of R144 obta ined at the ESO Very Large Telescope (VLT). We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km/s in NIV and NV lines. Furthermore, the NIII and NV line Doppler shifts are anti-correlated and the NIV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from 2 to 6 months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/Lsun ~ 6.8) suggests a present-day total mass content in the range of about 200 to 300 Msun, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 Msun. We briefly discuss the presence of such a massive object 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.
BVR light curves and radial velocities for the double-lined eclipsing binary V1135,Her were obtained. The brighter component of V1135,Her is a Cepheid variable with a pulsation period of 4.22433$pm$0.00026 days. The orbital period of the system is ab out 39.99782$pm$0.00233 days, which is the shortest value among the known Type,II Cepheid binaries. The observed B, V, and R magnitudes were cleaned for the intrinsic variations of the primary star. The remaining light curves, consisting of eclipses and proximity effects, are obtained. Our analyses of the multi-colour light curves and radial velocities led to the determination of fundamental stellar properties of both components of the interesting system V1135,Her. The system consists of two evolved stars, G1+K3 between giants and supergiants, with masses of M$_1$=1.461$pm$0.054 Msun ~and M$_2$=0.504$pm$0.040 {Msun} and radii of R$_1$=27.1$pm$0.4 {Rsun} and R$_2$=10.4$pm$0.2 {Rsun}. The pulsating star is almost filling its corresponding Roche lobe which indicates the possibility of mass loss or transfer having taken place. We find an average distance of d=7500$pm$450 pc using the BVR magnitudes and also the V-band extinction. Location in the Galaxy and the distance to the galactic plane with an amount of 1300 pc indicate that it probably belongs to the thick-disk population. Most of the observed and calculated parameters of the V1135,Her and its location on the color-magnitude and period-luminosity diagrams lead to a classification of an Anomalous Cepheid.
V752 Cen is a triple-lined spectroscopic contact binary. Its multi-color light curves were obtained in the years 1971 and 2018, independently. Photometric analyses reveal that the two sets of light curves produce almost consistent results. It contain s a W-subtype totally eclipsing binary, and its mass ratio and fill-out factor are $q = 3.35(1)$ and $f = 29(2),%$. The absolute elements of its two component stars were determined to be $M_{1} = 0.39(2)M_odot$, $M_{2} = 1.31(7)M_odot$, $R_{1} = 0.77(1)R_odot$, $R_{2} = 1.30(2)R_odot$, $L_{1} = 0.75(3)L_odot$ and $L_{2} = 2.00(7)L_odot$. The period of V752 Cen is 0.37023198 day. The 0.37-d period remained constant from its first measurement in 1971 until the year 2000. However, it changed suddenly around the year 2000 and has been increasing continuously at a rate of $dP/dt=+5.05times{10^{-7}}daycdot year^{-1}$ since then, which can be explained by mass transfer from the less massive component star to the more massive one with a rate of $frac{dM_{2}}{dt}=2.52times{10^{-7}}M_odot/year$. The period variation of V752 Cen over the 48 years in which the period has been monitored is really unusual, and is potentially related to effects from the possible presence of a nearby third star or of a pair of stars in a second binary.
Masses of classical Cepheids of 3 to 11 M$odot$ are predicted by theory but those measured, clump between 3.6 and 5 M$odot$. As a result, their mass-luminosity relation is poorly constrained, impeding our understanding of basic stellar physics and th e Leavitt Law. All Cepheid masses come from the analysis of 11 binary systems, including only 5 double-lined and well-suited for accurate dynamical mass determination. We present a project to analyze a new, numerous group of Cepheids in double-lined binary (SB2) systems to provide mass determinations in a wide mass interval and study their evolution. We analyze a sample of 41 candidate binary LMC Cepheids spread along the P-L relation, that are likely accompanied by luminous red giants, and present indirect and direct indicators of their binarity. In a spectroscopic study of a subsample of 18 brightest candidates, for 16 we detected lines of two components in the spectra, already quadrupling the number of Cepheids in SB2 systems. Observations of the whole sample may thus lead to quadrupling all the Cepheid mass estimates available now. For the majority of our candidates, erratic intrinsic period changes dominate over the light travel-time effect due to binarity. However, the latter may explain the periodic phase modulation for 4 Cepheids. Our project paves the way for future accurate dynamical mass determinations of Cepheids in the LMC, Milky Way, and other galaxies, which will potentially increase the number of known Cepheid masses even 10-fold, hugely improving our knowledge about these important stars.
We report the discovery of SDSS J133725.26+395237.7 (hereafter SDSS J1337+3952), a double-lined white dwarf (WD+WD) binary identified in early data from the fifth generation Sloan Digital Sky Survey (SDSS-V). The double-lined nature of the system ena bles us to fully determine its orbital and stellar parameters with follow-up Gemini spectroscopy and Swift UVOT ultraviolet fluxes. The system is nearby ($d = 113$ pc), and consists of a $0.51, M_odot$ primary and a $0.32, M_odot$ secondary. SDSS J1337+3952 is a powerful source of gravitational waves in the millihertz regime, and will be detectable by future space-based interferometers. Due to this gravitational wave emission, the binary orbit will shrink down to the point of interaction in $approx 220$ Myr. The inferred stellar masses indicate that SDSS J1337+3952 will likely not explode as a Type Ia supernova (SN Ia). Instead, the system will probably merge and evolve into a rapidly rotating helium star, and could produce an under-luminous thermonuclear supernova along the way. The continuing search for similar systems in SDSS-V will grow the statistical sample of double-degenerate binaries across parameter space, constraining models of binary evolution and SNe Ia.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا