ترغب بنشر مسار تعليمي؟ اضغط هنا

The photon-pion transition form factor: incompatible data or incompatible models?

60   0   0.0 ( 0 )
 نشر من قبل Bruno El-Bennich
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The elastic and $gamma to pi$ transition form factors of the pion along with its usual static observables are calculated within a light-front field approach to the constituent quark model. The focus of this exercise in a simple model is on a unified description of all observables with one singly parametrized light-front wave function to detect possible discrepancies in experimental data, in particular the contentious large momentum-squared data on the transition factor as reported by BaBar and Belle. We also discuss the relation of a small to vanishing pion charge radius with an almost constant pion distribution amplitude and compare our results with those obtained in a holographic light-front model.

قيم البحث

اقرأ أيضاً

A novel method is employed to compute the pion electromagnetic form factor, F_pi(Q^2), on the entire domain of spacelike momentum transfer using the Dyson-Schwinger equation (DSE) framework in quantum chromodynamics (QCD). The DSE architecture unifie s this prediction with that of the pions valence-quark parton distribution amplitude (PDA). Using this PDA, the leading-order, leading-twist perturbative QCD result for Q^2 F_pi(Q^2) underestimates the full computation by just 15% on Q^2>~8GeV^2, in stark contrast with the result obtained using the asymptotic PDA. The analysis shows that hard contributions to the pion form factor dominate for Q^2>~8GeV^2 but, even so, the magnitude of Q^2 F_pi(Q^2) reflects the scale of dynamical chiral symmetry breaking, a pivotal emergent phenomenon in the Standard Model.
We reconsider QCD factorization for the leading power contribution to the $gamma^{ast} gamma to pi^0$ form factor $F_{gamma^{ast} gamma to pi^0} (Q^2)$ at one loop using the evanescent operator approach, and demonstrate the equivalence of the resulti ng factorization formulae derived with distinct prescriptions of $gamma_5$ in dimensional regularization. Applying the light-cone QCD sum rules (LCSRs) with photon distribution amplitudes (DAs) we further compute the subleading power contribution to the pion-photon form factor induced by the hadronic component of the real photon at the next-to-leading-order in ${cal O}(alpha_s)$, with both naive dimensional regularization and t Hooft-Veltman schemes of $gamma_5$. Confronting our theoretical predictions of $F_{gamma^{ast} gamma to pi^0} (Q^2)$ with the experimental measurements from the BaBar and the Belle Collaborations implies that a reasonable agreement can be achieved without introducing an exotic end-point behaviour for the twist-2 pion DA.
One of the most intriguing aspects of Quantum Mechanics is the impossibility of measuring at the same time observables corresponding to non-commuting operators. This impossibility can be partially relaxed when considering joint or sequential weak val ues evaluation. Indeed, weak measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. Here we show how we realized, for the first time, a sequential weak value evaluation of two incompatible observables on a single photon.
171 - S. Noguera , V. Vento 2010
Recent BaBaR data on the pion transition form factor, whose Q^2 dependence is much steeper then predicted by asymptotic Quantum Chromodynamics (QCD), have caused a renewed interest in its theoretical description. We present here a formalism based on a model independent low energy description and a high energy description based on QCD, which match at a scale Q_0. The high energy description incorporates a flat pion distribution amplitude, phi(x)=1, at the matching scale Q_0 and QCD evolution from Q_0 to Q>Q_0. The flat pion distribution is connected, through soft pion theorems and chiral symmetry, to the pion valance parton distribution at the same low scale Q_0. The procedure leads to a good description of the data, and incorporating additional twist three effects, to an excellent description of the data.
110 - S. Noguera , S. Scopetta 2011
The eta-photon transition form factor is evaluated in a formalism based on a phenomenological description at low values of the photon virtuality, and a QCD-based description at high photon virtualities, matching at a scale $Q_{0}^{2}$. The high photo n virtuality description makes use of a Distribution Amplitude calculated in the Nambu-Jona-Lasinio model with Pauli-Villars regularization at the matching scale $Q_{0}^{2}$, and QCD evolution from $Q_{0}^{2}$ to higher values of $Q^{2}$. A good description of the available data is obtained. The analysis indicates that the recent data from the BaBar collaboration on pion and eta transition form factor can be well reproduced, if a small contribution of twist three at the matching scale $Q_{0}^{2}$ is included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا