ﻻ يوجد ملخص باللغة العربية
In this publication the performance of the Monte Carlo event generator JEWEL in non-central heavy-ion collisions is investigated. JEWEL is a consistent perturbative framework for jet evolution in the presence of a dense medium. It yields a satisfactory description of a variety of jet observables in central collisions at the LHC, although so far with a simplistic model of the medium. Here, it is demonstrated that also jet measurements in non-central collisions, and in particular the dependence of the jet suppression on the angle relative to the reaction plane, are reproduced by the same model.
A study of several observables characterising fragment distributions of medium-modified parton showers using the JEWEL and Q-PYTHIA models is presented, with emphasis on the relation between the different observables.
Processes in which a jet recoils against an electroweak boson complement studies of jet quenching in heavy ion collisions at the LHC. As the boson does not interact strongly it escapes the dense medium unmodified and thus provides a more direct acces
In the last 30 years, the physics of jet quenching has gone from an early stage of a pure theoretical idea to initial theoretical calculations, experimental verification and now a powerful diagnostic tool for studying properties of the quark-gluon pl
Based on a pQCD inspired dynamical model of jet-medium interactions, Jewel, we have studied possible modifications to inclusive jet yields and a set of jet shape observables, namely, the fragmentation functions and radial momentum distributions when
QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole