ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital angular momentum from marginals of quadrature distributions

44   0   0.0 ( 0 )
 نشر من قبل Luis L. Sanchez. Soto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We set forth a method to analyze the orbital angular momentum of a light field. Instead of using the canonical formalism for the conjugate pair angle-angular momentum, we model this latter variable by the superposition of two independent harmonic oscillators along two orthogonal axes. By describing each oscillator by a standard Wigner function, we derive, via a consistent change of variables, a comprehensive picture of the orbital angular momentum. We compare with previous approaches and show how this method works in some relevant examples.

قيم البحث

اقرأ أيضاً

We demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in quantized units of hbar, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in a Bose-Einstein conde nsate of sodium atoms. We show that the process is coherent by creating superpositions of different vortex states, where the relative phase between the states is determined by the relative phases of the optical fields. Furthermore, we create vortices of charge 2 by transferring to each atom the orbital angular momentum of two photons.
The optical spin-orbit coupling occurring in a suitably patterned nonuniform birefringent plate known as `q-plate allows entangling the polarization of a single photon with its orbital angular momentum (OAM). This process, in turn, can be exploited f or building a bidirectional spin-OAM interface, capable of transposing the quantum information from the spin to the OAM degree of freedom of photons and textit{vice versa}. Here, we experimentally demonstrate this process by single-photon quantum tomographic analysis. Moreover, we show that two-photon quantum correlations such as those resulting from coalescence interference can be successfully transferred into the OAM degree of freedom.
So far experimental confirmation of entanglement has been restricted to qubits, i.e. two-state quantum systems including recent realization of three- and four-qubit entanglements. Yet, an ever increasing body of theoretical work calls for entanglemen t in quantum system of higher dimensions. Here we report the first realization of multi-dimensional entanglement exploiting the orbital angular momentum of photons, which are states of the electromagnetic field with phase singularities (doughnut modes). The properties of such states could be of importance for the efforts in the field of quantum computation and quantum communication. For example, quantum cryptography with higher alphabets could enable one to increase the information flux through the communication channels.
We present an optomechanical device designed to allow optical transduction of orbital angular momentum of light. An optically induced twist imparted on the device by light is detected using an integrated cavity optomechanical system based on a nanobe am slot-mode photonic crystal cavity. This device could allow measurement of the orbital angular momentum of light when photons are absorbed by the mechanical element, or detection of the presence of photons when they are scattered into new orbital angular momentum states by a sub-wavelength grating patterned on the device. Such a system allows detection of a $l = 1$ orbital angular momentum field with an average power of $3.9times10^3$ photons modulated at the mechanical resonance frequency of the device and can be extended to higher order orbital angular momentum states.
Hybrid entangled states exhibit entanglement between different degrees of freedom of a particle pair and thus could be useful for asymmetric optical quantum network where the communication channels are characterized by different properties. We report the first experimental realization of hybrid polarization-orbital angular momentum (OAM) entangled states by adopting a spontaneous parametric down conversion source of polarization entangled states and a polarization-OAM transferrer. The generated quantum states have been characterized through quantum state tomography. Finally, the violation of Bells inequalities with the hybrid two photon system has been observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا