ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping dark matter in the gamma-ray sky with galaxy catalogs

126   0   0.0 ( 0 )
 نشر من قبل Shin'ichiro Ando
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-correlating gamma-ray maps with locations of galaxies in the low-redshift Universe vastly increases sensitivity to signatures of annihilation of dark matter particles. Low-redshift galaxies are ideal targets, as the largest contribution to anisotropy in the gamma-ray sky from annihilation comes from $zlesssim 0.1$, where we expect minimal contributions from astrophysical sources such as blazars. Cross-correlating the five-year data of Fermi-LAT with the redshift catalog of the 2MASS survey can detect gamma rays from annihilation if dark matter has the canonical annihilation cross section and its mass is smaller than $sim$100 GeV.



قيم البحث

اقرأ أيضاً

We report the detection of a cross-correlation signal between {it Fermi} Large Area Telescope diffuse gamma-ray maps and catalogs of clusters. In our analysis, we considered three different catalogs: WHL12, redMaPPer and PlanckSZ. They all show a pos itive correlation with different amplitudes, related to the average mass of the objects in each catalog, which also sets the catalog bias. The signal detection is confirmed by the results of a stacking analysis. The cross-correlation signal extends to rather large angular scales, around 1 degree, that correspond, at the typical redshift of the clusters in these catalogs, to a few to tens of Mpc, i.e. the typical scale-length of the large scale structures in the Universe. Most likely this signal is contributed by the cumulative emission from AGNs associated to the filamentary structures that converge toward the high peaks of the matter density field in which galaxy clusters reside. In addition, our analysis reveals the presence of a second component, more compact in size and compatible with a point-like emission from within individual clusters. At present, we cannot distinguish between the two most likely interpretations for such a signal, i.e. whether it is produced by AGNs inside clusters or if it is a diffuse gamma-ray emission from the intra-cluster medium. We argue that this latter, intriguing, hypothesis might be tested by applying this technique to a low redshift large mass cluster sample.
Observations of diffuse Galactic gamma ray emission (DGE) by the Fermi Large Area Telescope (LAT) allow a detailed study of cosmic rays and the interstellar medium. However, diffuse emission models of the inner Galaxy underpredict the Fermi-LAT data at energies above a few GeV and hint at possible non-astrophysical sources including dark matter (DM) annihilations or decays. We present a study of the possible emission components from DM using the high-resolution Via Lactea II N-body simulation of a Milky Way-sized DM halo. We generate full-sky maps of DM annihilation and decay signals that include modeling of the adiabatic contraction of the host density profile, Sommerfeld enhanced DM annihilations, $p$-wave annihilations, and decaying DM. We compare our results with the DGE models produced by the Fermi-LAT team over different sky regions, including the Galactic center, high Galactic latitudes, and the Galactic anti-center. This work provides possible templates to fit the observational data that includes the contribution of the subhalo population to DM gamma-ray emission, with the significance depending on the annihilation/decay channels and the Galactic regions being considered.
We re-evaluate the extragalactic gamma-ray flux prediction from dark matter annihilation in the approach of integrating over the nonlinear matter power spectrum, extrapolated to the free-streaming scale. We provide an estimate of the uncertainty base d entirely on available N-body simulation results and minimal theoretical assumptions. We illustrate how an improvement in the simulation resolution, exemplified by the comparison between the Millennium and Millennium II simulations, affects our estimate of the flux uncertainty and we provide a best guess value for the flux multiplier, based on the assumption of stable clustering for the dark matter perturbations described as a collision-less fluid. We achieve results comparable to traditional Halo Model calculations, but with a much simpler procedure and a more general approach, as it relies only on one, directly measurable quantity. In addition we discuss the extension of our calculation to include baryonic effects as modeled in hydrodynamical cosmological simulations and other possible sources of uncertainty that would in turn affect indirect dark matter signals. Upper limit on the integrated power spectrum from supernovae lensing magnification are also derived and compared with theoretical expectations.
The astrophysics community is considering plans for a variety of gamma-ray telescopes (including ACT and GRIPS) in the energy range 1--100 MeV, which can fill in the so-called MeV gap in current sensitivity. We investigate the utility of such detecto rs for the study of low-mass dark matter annihilation or decay. For annihilating (decaying) dark matter with a mass below about 140 MeV (280 MeV) and couplings to first generation quarks, the final states will be dominated by photons or neutral pions, producing striking signals in gamma-ray telescopes. We determine the sensitivity of future detectors to the kinematically allowed final states. In particular, we find that planned detectors can improve on current sensitivity to this class of models by up to a few orders of magnitude.
We present a suite of 18 synthetic sky catalogs designed to support science analysis of galaxies in the Dark Energy Survey Year 1 (DES Y1) data. For each catalog, we use a computationally efficient empirical approach, ADDGALS, to embed galaxies withi n light-cone outputs of three dark matter simulations that resolve halos with masses above ~5x10^12 h^-1 m_sun at z <= 0.32 and 10^13 h^-1 m_sun at z~2. The embedding method is tuned to match the observed evolution of galaxy counts at different luminosities as well as the spatial clustering of the galaxy population. Galaxies are lensed by matter along the line of sight --- including magnification, shear, and multiple images --- using CALCLENS, an algorithm that calculates shear with 0.42 arcmin resolution at galaxy positions in the full catalog. The catalogs presented here, each with the same LCDM cosmology (denoted Buzzard), contain on average 820 million galaxies over an area of 1120 square degrees with positions, magnitudes, shapes, photometric errors, and photometric redshift estimates. We show that the weak-lensing shear catalog, redMaGiC galaxy catalogs and redMaPPer cluster catalogs provide plausible realizations of the same catalogs in the DES Y1 data by comparing their magnitude, color and redshift distributions, angular clustering, and mass-observable relations, making them useful for testing analyses that use these samples. We make public the galaxy samples appropriate for the DES Y1 data, as well as the data vectors used for cosmology analyses on these simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا