ترغب بنشر مسار تعليمي؟ اضغط هنا

A mid-infrared exploration of the dusty environments of active galactic nuclei

180   0   0.0 ( 0 )
 نشر من قبل Almudena Alonso-Herrero
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first results from a mid-infrared survey of local Active Galactic Nuclei (AGN) using the CanariCam (CC) instrument on the 10.4m Gran Telescopio Canarias (GTC). We are obtaining sub-arcsecond angular resolution (0.3-0.6 arcsec) mid-IR imaging and spectroscopic observations of a sample of 100 local AGN, which are complemented with data taken with T-ReCS, VISIR, and Michelle. The full sample contains approximately 140 AGN, covers nearly six orders of magnitude in AGN luminosity, and includes low-luminosity AGN (LLAGN), Seyfert 1s and 2s, QSO, radio galaxies, and (U)LIRGs. The main goals of this project are: (1) to test whether the properties of the dusty tori of the AGN Unified Model depend on the AGN type, (2) to study the nuclear star formation activity and obscuration of local AGN, and (3) to explore the role of the dusty torus in LLAGN.



قيم البحث

اقرأ أيضاً

83 - Hajime Inoue 2021
We study accretion environments of active galactic nuclei when a super-massive black hole wanders in a circum-nuclear region and passes through an interstellar medium there. It is expected that a Bondi-Hoyle-Lyttleton type accretion of the interstell ar matter takes place and an accretion stream of matter trapped by the black hole gravitational field appears from a tail shock region. Since the trapped matter is likely to have a certain amount of specific angular momentum, the accretion stream eventually forms an accretion ring around the black hole. According to the recent study, the accretion ring consists of a thick envelope and a thin core, and angular momenta are transfered from the inner side facing to the black hole to the opposite side respectively in the envelope and the core. As a result, a thick accretion flow and a thick excretion flow extend from the envelope, and a thin accretion disk and a thin excretion disk do from the core. The thin excretion disk is predicted to terminate at some distance forming an excretion ring, while the thick excretion flow is considered to become a super-sonic wind flowing to the infinity. The thick excretion flow from the accretion ring is expected to interact with the accretion stream toward the accretion ring and to be collimated to bi-polar cones. These pictures provide a likely guide line to interpret the overall accretion environments suggested from observations.
We present Spitzer measurements of the aromatic (also known as PAH) features for 35 Seyfert galaxies from the revised Shapley-Ames sample and find that the relative strengths of the features differ significantly from those observed in star-forming ga laxies. Specifically, the features at 6.2, 7.7, and 8.6 micron are suppressed relative to the 11.3 micron feature in Seyferts. Furthermore, we find an anti-correlation between the L(7.7 micron)/L(11.3 micron) ratio and the strength of the rotational H2 (molecular hydrogen) emission, which traces shocked gas. This suggests that shocks suppress the short-wavelength features by modifying the structure of the aromatic molecules or destroying the smallest grains. Most Seyfert nuclei fall on the relationship between aromatic emission and [Ne II] emission for star-forming galaxies, indicating that aromatic-based estimates of the star-formation rate in AGN host galaxies are generally reasonable. For the outliers from this relationship, which have small L(7.7 micron)/L(11.3 micron) ratios and strong H2 emission, the 11.3 micron feature still provides a valid measure of the star-formation rate.
109 - F. Marin , M. Stalevski 2015
If the existence of an obscuring circumnuclear region around the innermost regions of active galactic nuclei (AGN) has been observationally proven, its geometry remains highly uncertain. The morphology usually adopted for this region is a toroidal st ructure, but other alternatives, such as flared disks, can be a good representative of equatorial outflows. Those two geometries usually provide very similar spectroscopic signatures, even when they are modeled under the assumption of fragmentation. In this lecture note, we show that the resulting polarization signatures of the two models, either a torus or a flared disk, are quite different from each other. We use a radiative transfer code that computes the 2000 - 8000 angstrom polarization of the two morphologies in a clumpy environment, and show that varying the sizes of a toroidal region has deep impacts onto the resulting polarization, while the polarization of flared disks is independent of the outer radius. Clumpy flared disks also produce higher polarization degrees (about 10 % at best) together with highly variable polarization position angles.
An empirical forward-modeling framework is developed to interpret the multiwavelength properties of Active Galactic Nuclei (AGN) and provide insights into the overlap and incompleteness of samples selected at different parts of the electromagnetic sp ectrum. The core of the model are observationally derived probabilites on the occupation of galaxies by X-ray selected AGN. These are used to seed mock galaxies drawn from stellar-mass functions with accretion events and then associate them with spectral energy distributions that describe both the stellar and AGN emission components. This approach is used to study the complementarity between X-ray and WISE mid-infrared AGN selection methods. We first show that the basic observational properties of the X-ray and WISE AGN (magnitude, redshift distributions) are adequately reproduced by the model. We then infer the level of contamination of the WISE selection and show that this is dominated by non-AGN at redshifts z < 0.5. These are star-forming galaxies that scatter into the WISE AGN selection wedge because of photometric uncertainties affecting their colours. Our baseline model shows a sharp drop in the number density of heavily obscured AGN above the Compton thick limit in the WISE bands. The model also overpredicts by a factor of 1.5 the fraction of X-ray associations in the WISE AGN selection box compared to observations. This suggests a population of X-ray faint sources that is not reproduced by the model. This discrepancy is discussed in the context of either heavily obscured or intrinsically X-ray weak AGN. Evidence is found in favour of the latter.
We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 $mu$m) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCa m on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (<1 per cent), and the degree of polarization is often a few per cent over extended regions of the host galaxy where we have sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization ($sim$11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا