ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical variability of quasars: a damped random walk

105   0   0.0 ( 0 )
 نشر من قبل Zeljko Ivezic
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A damped random walk is a stochastic process, defined by an exponential covariance matrix that behaves as a random walk for short time scales and asymptotically achieves a finite variability amplitude at long time scales. Over the last few years, it has been demonstrated, mostly but not exclusively using SDSS data, that a damped random walk model provides a satisfactory statistical description of observed quasar variability in the optical wavelength range, for rest-frame timescales from 5 days to 2000 days. The best-fit characteristic timescale and asymptotic variability amplitude scale with the luminosity, black hole mass, and rest wavelength, and appear independent of redshift. In addition to providing insights into the physics of quasar variability, the best-fit model parameters can be used to efficiently separate quasars from stars in imaging surveys with adequate long-term multi-epoch data, such as expected from LSST.



قيم البحث

اقرأ أيضاً

105 - Ying Zu 2012
The damped random walk (DRW) model is increasingly used to model the variability in quasar optical light curves, but it is still uncertain whether the DRW model provides an adequate description of quasar optical variability across all time scales. Us ing a sample of OGLE quasar light curves, we consider four modifications to the DRW model by introducing additional parameters into the covariance function to search for deviations from the DRW model on both short and long time scales. We find good agreement with the DRW model on time scales that are well sampled by the data (from a month to a few years), possibly with some intrinsic scatter in the additional parameters, but this conclusion depends on the statistical test employed and is sensitive to whether the estimates of the photometric errors are correct to within ~10%. On very short time scales (below a few months), we see some evidence of the existence of a cutoff below which the correlation is stronger than the DRW model, echoing the recent finding of Mushotzky et al. (2011) using quasar light curves from Kepler. On very long time scales (> a few years), the light curves do not constrain models well, but are consistent with the DRW model.
We model the time variability of ~9,000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk. Using 2.7 million photometric measurements collected over 10 years, we confirm the results of Kelly et al. (2009) and Koz{l}owski e t al. (2010) that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The damped random walk model provides a simple, fast [O(N) for N data points], and powerful statistical description of quasar light curves by a characteristic time scale (tau) and an asymptotic rms variability on long time scales (SF_inf). We searched for correlations between these two variability parameters and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. We find that tau increases with increasing wavelength with a power law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with power law index of 0.21+/-0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic time scale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic time scale and variability amplitude between the full sample and the small subsample of quasars detected by ROSAT. Our results provide a simple quantitative framework for generating mock quasar light curves, such as currently used in LSST image simulations. (abridged)
50 - Hengxiao Guo 2017
Studies have shown that UV/optical light curves of quasars can be described with the prevalent damped random walk (DRW, also known as Ornstein-Uhlenbeck process) model. A white noise power spectral density (PSD) is expected at low frequency in this m odel, however, direct observational constraint to the low frequency PSD slope is hard due to limited lengths of the light curves available. Meanwhile, quasars show too large scatter in their DRW parameters to be attributed to the uncertainties in the measurements and the dependence of variation to known physical factors. In this work we present simulations showing that, if the low frequency PSD deviates from DRW, the red noise leakage can naturally produce large scatter in variation parameters measured from simulated light curves. The steeper the low frequency PSD slope is, the larger scatter we expect. Based on the observations of SDSS Stripe 82 quasars, we find the low frequency PSD slope should be no steeper than -1.3. The actual slope could be flatter, which consequently requires that quasar variabilities should be influenced by other unknown factors. We speculate that magnetic field and/or metallicity could be such additional factors.
174 - Ravi Joshi 2012
We present the results of an optical photometric monitoring program of 10 extremely radio loud broad absorption line quasars (RL-BALQSOs) with radio-loudness parameter, R, greater than 100 and magnitude g_i < 19. Over an observing run of about 3.5-6. 5 hour we found a clear detection of variability for one of our 10 radio-loud BALQSOs with the INOV duty cycle of 5.1 per cent, while on including the probable variable cases, a higher duty cycle of 35.1 per cent is found; which are very similar to the duty cycle of radio quiet broad absorption line quasars (RQ-BALQSOs). This low duty cycle of clear variability per cent in radio-loud sub-class of BALQSOs can be understood under the premise where BALs outflow may arise from large variety of viewing angles from the jet axis or perhaps being closer to the disc plane.
{Abridged} Rapid variations in optical flux are seen in many quasars and all blazars. The amount of variability in different classes of Active Galactic Nuclei has been studied extensively but many questions remain unanswered. We present the results o f a long-term programme to investigate the intra-night optical variability (INOV) of powerful flat spectrum radio core-dominated quasars (CDQs), with a focus on probing the relationship of INOV to the degree of optical polarization. We observed a sample of 16 bright CDQs showing strong broad optical emission lines and consisting of both high and low optical polarization quasars (HPCDQs and LPCDQs). We employed ARIES, IIA, IGO telescopes, to carry out {it R}-band monitoring on a total of 47 nights. Combining these INOV data with those taken from the literature, we were able to increase the sample size to 21 CDQs(12 LPCDQs and 9 HPCDQs) monitored on a total of 73 nights. As the existence of a prominent flat-spectrum radio core signifies that strong relativistic beaming is present in all these CDQs, the definitions of the two sets differ primarily in fractional optical polarization, the LPCDQs showing a very low median$ P_{op} simeq$ 0.4 per cent. Our study yields an INOV duty cycle (DC) of $sim$28 per cent for the LPCDQs and $sim 68$ percent for HPCDQs. If only strong INOV with fractional amplitude above 3 per cent is considered, the corresponding DCs are $sim$ 7 per cent and $sim$ 40 per cent, respectively.From this strong contrast between the two classes of luminous, relativistically beamed quasars, it is apparent that relativistic beaming is normally not a sufficient condition for strong INOV and a high optical polarization is the other necessary condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا