ﻻ يوجد ملخص باللغة العربية
A damped random walk is a stochastic process, defined by an exponential covariance matrix that behaves as a random walk for short time scales and asymptotically achieves a finite variability amplitude at long time scales. Over the last few years, it has been demonstrated, mostly but not exclusively using SDSS data, that a damped random walk model provides a satisfactory statistical description of observed quasar variability in the optical wavelength range, for rest-frame timescales from 5 days to 2000 days. The best-fit characteristic timescale and asymptotic variability amplitude scale with the luminosity, black hole mass, and rest wavelength, and appear independent of redshift. In addition to providing insights into the physics of quasar variability, the best-fit model parameters can be used to efficiently separate quasars from stars in imaging surveys with adequate long-term multi-epoch data, such as expected from LSST.
The damped random walk (DRW) model is increasingly used to model the variability in quasar optical light curves, but it is still uncertain whether the DRW model provides an adequate description of quasar optical variability across all time scales. Us
We model the time variability of ~9,000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk. Using 2.7 million photometric measurements collected over 10 years, we confirm the results of Kelly et al. (2009) and Koz{l}owski e
Studies have shown that UV/optical light curves of quasars can be described with the prevalent damped random walk (DRW, also known as Ornstein-Uhlenbeck process) model. A white noise power spectral density (PSD) is expected at low frequency in this m
We present the results of an optical photometric monitoring program of 10 extremely radio loud broad absorption line quasars (RL-BALQSOs) with radio-loudness parameter, R, greater than 100 and magnitude g_i < 19. Over an observing run of about 3.5-6.
{Abridged} Rapid variations in optical flux are seen in many quasars and all blazars. The amount of variability in different classes of Active Galactic Nuclei has been studied extensively but many questions remain unanswered. We present the results o