ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and thermodynamic properties of a weakly-coupled antiferromagnetic spin-1/2 chain compound (C5H12N)CuBr3

572   0   0.0 ( 0 )
 نشر من قبل Shiyan Li
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single crystals of a metal organic complex ce{(C5H12N)CuBr3} (ce{C5H12N} = piperidinium, pipH for short) have been synthesized and the structure was determined by single-crystal X-ray diffraction. ce{(pipH)CuBr3} crystallizes in the monoclinic group $C$2/$c$. Edging-sharing ce{CuBr5} units link to form zigzag chains along the $c$ axis and the neighboring Cu(II) ions with spin-1/2 are bridged by bi-bromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant $J$ $sim$ 17 K. At zero field, ce{(pipH)CuBr3} shows three-dimensional (3D) order below $T_N$ = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant $J$ = 0.65 K is obtained and the ordered magnetic moment $m_0$ is about 0.20 $mu_B$. This value of $m_0$ makes ce{(pipH)CuBr3} a rare compound suitable to study the dimensional crossover problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field $H geq$ 3 T is applied along the $a$ axis. The $H$ - $T$ phase diagram of ce{(pipH)CuBr3} is roughly constructed. The interplay between exchange interactions, dimensionality, Zeeman energy and possible Dzyaloshinkii-Moriya interaction should be the driving force for the multiple phase transitions.



قيم البحث

اقرأ أيضاً

We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl3. Measurements over a wide range of wave-vector transfers along the c hain confirm that above T_N CsNiCl3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length xi=4.0(2) sites at T=6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multi-particle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multi-particle continuum on the chain wave-vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl3 for T < 12K, possibly caused by multiply-frustrated interchain interactions.
187 - Yogesh Singh , R. W. McCallum , 2007
Static magnetic susceptibility chi, ac susceptibility chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are repor ted. A Curie-Wiess fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.
We report zero and longitudinal magnetic field muon spin relaxation measurements of the spin S=1/2 antiferromagnetic Heisenberg chain material SrCuO2. We find that in a weak applied magnetic field B the spin-lattice relaxation rate follows a power la w B^n with n=-0.9(3). This result is temperature independent for 5K < T < 300 K. Within conformal field theory and using the Muller ansatz we conclude ballistic spin transport in SrCuO2.
Specific heat ($C_V$) measurements in the spin-1/2 Cu$_2$(C$_2$H$_{12}$N$_2$)$_2$Cl$_4$ system under a magnetic field up to $H=8.25 T$ are reported and compared to the results of numerical calculations based on the 2-leg antiferromagnetic Heisenberg ladder. While the temperature dependences of both the susceptibility and the low field specific heat are accurately reproduced by this model, deviations are observed below the critical field $H_{C1}$ at which the spin gap closes. In this Quantum High Field phase, the contribution of the low-energy quantum fluctuations are stronger than in the Heisenberg ladder model. We argue that this enhancement can be attributed to dynamical lattice fluctuations. Finally, we show that such a Heisenberg ladder, for $H>H_{C1}$, is unstable, when coupled to the 3D lattice, against a lattice distortion. These results provide an alternative explanation for the observed low temperature ($T_Csim 0.5K$ -- $0.8K$) phase (previously interpreted as a 3D magnetic ordering) as a new type of incommensurate gapped state.
A high order series expansion is employed to study the thermodynamical properties of a S=1/2 chain coupled to dispersionless phonons. The results are obtained without truncating the phonon subspace since the series expansion is performed formally in the overall exchange coupling J. The results are used to investigate various parameter regimes, e.g. the adiabatic and antiadiabatic limit as well as the intermediate regime which is difficult to investigate by other methods. We find that dynamic phonon effects become manifest when more than one thermodynamic quantity is analyzed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا