ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of $U$-boson from $pi^{0}$-meson decays at HIAF energy

49   0   0.0 ( 0 )
 نشر من قبل Xiaoyun Wang
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the frame of LDM (light dark matter)-model, the LDM exchange particle $U$-boson (with mass 10-100 MeV) can be produced from many meson decay process so it attracts a lot of attention. Considering the merit of searching the $U$-boson from $pi ^{0}$ decay, the momentum spectra of light spin-1 vector $U$-boson from decay channel $pi ^{0}rightarrow gamma U$ and the energy spectra of positron decay from $Urightarrow e^{+}e^{-}$ at beam energy of 5-10 GeV are first presented by using a relativistic transport (ART) model. Moreover,the feasibility and rationality of searching the $U$-boson in the experiment at HIAF energy are discussed, which will be an important promotion to understand and ultimately detect the $U$-boson, both in theory and experiment.

قيم البحث

اقرأ أيضاً

A search for the rare decay $K_L !to! pi^0 u overline{ u}$ was performed. With the data collected in 2015, corresponding to $2.2 times 10^{19}$ protons on target, a single event sensitivity of $( 1.30 pm 0.01_{rm stat} pm 0.14_{rm syst} ) times 10^{ -9}$ was achieved and no candidate events were observed. We set an upper limit of $3.0 times 10^{-9}$ for the branching fraction of $K_L !to! pi^0 u overline{ u}$ at the 90% confidence level (C.L.), which improved the previous limit by almost an order of magnitude. An upper limit for $K_L !to! pi^0 X^0$ was also set as $2.4 times 10^{-9}$ at the 90% C.L., where $X^0$ is an invisible boson with a mass of $135~{rm MeV}/c^2$.
A study of $D^+pi^-$, $D^0 pi^+$ and $D^{*+}pi^-$ final states is performed using pp collision data, corresponding to an integrated luminosity of 1.0 $fb^{-1}$, collected at a centre-of-mass energy of 7 TeV with the LHCb detector. The $D_1(2420)^0$ r esonance is observed in the $D^{*+}pi^-$ final state and the $D^*_2(2460)$ resonance is observed in the $D^+pi^-$, $D^0 pi^+$ and $D^{*+}pi^-$ final states. For both resonances, their properties and spin-parity assignments are obtained. In addition, two natural parity and two unnatural parity resonances are observed in the mass region between 2500 and 2800 MeV. Further structures in the region around 3000 MeV are observed in all the $D^{*+}pi^-$, $D^+pi^-$ and $D^0 pi^+$ final states.
We present a measurement of the ratio of the Bs meson lifetime, in the flavor-specific decay to $D_s^+pi^-$, to that of the B0 meson. The pp collision data used correspond to an integrated luminosity of 1/fb, collected with the LHCb detector, at a ce nter-of-mass energy of 7 TeV. Combining our measured value of 1.010 +/- 0.010 +/- 0.008 for this ratio with the known lifetime, we determine the flavor-specific Bs lifetime to be tau(Bs) = 1.535 +/- 0.015 +/- 0.014 ps, where the uncertainties are statistical and systematic, respectively. This is the most precise measurement to date, and is consistent with previous measurements and theoretical predictions.
90 - J. K. Ahn , K. Y. Baek , S. Banno 2016
We searched for the $CP$-violating rare decay of neutral kaon, $K_{L} to pi^0 u overline{ u}$, in data from the first 100 hours of physics running in 2013 of the J-PARC KOTO experiment. One candidate event was observed while $0.34pm0.16$ background events were expected. We set an upper limit of $5.1times10^{-8}$ for the branching fraction at the 90% confidence level (C.L.). An upper limit of $3.7times10^{-8}$ at the 90% C.L. for the $K_{L} to pi^{0} X^{0}$decay was also set for the first time, where $X^{0}$ is an invisible particle with a mass of 135 MeV/$c^{2}$.
The rare decay $K_L !to! pi^0 u overline{ u}$ was studied with the dataset taken at the J-PARC KOTO experiment in 2016, 2017, and 2018. With a single event sensitivity of $( 7.20 pm 0.05_{rm stat} pm 0.66_{rm syst} ) times 10^{-10}$, three candidate events were observed in the signal region. After unveiling them, contaminations from $K^{pm}$ and scattered $K_L$ decays were studied, and the total number of background events was estimated to be $1.22 pm 0.26$. We conclude that the number of observed events is statistically consistent with the background expectation. For this dataset, we set an upper limit of $4.9 times 10^{-9}$ on the branching fraction of $K_L !to! pi^0 u overline{ u}$ at the 90% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا