ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersion in Neptunes Zonal Wind Velocities from NIR Keck AO Observations in July 2009

68   0   0.0 ( 0 )
 نشر من قبل Patrick Fitzpatrick
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report observations of Neptune made in H-(1.4-1.8 {mu}m) and K-(2.0-2.4 {mu}m) bands on 14 and 16 July 2009 from the 10-m W.M. Keck II Telescope using the near-infrared camera NIRC2 coupled to the Adaptive Optics (AO) system. We track the positions of 54 bright atmospheric features over a few hours to derive their zonal and latitudinal velocities, and perform radiative transfer modeling to measure the cloud-top pressures of 50 features seen simultaneously in both bands. We observe one South Polar Feature (SPF) on 14 July and three SPFs on 16 July at ~65 deg S. The SPFs observed on both nights are different features, consistent with the high variability of Neptunes storms. There is significant dispersion in Neptunes zonal wind velocities about the smooth Voyager wind profile fit of Sromovsky et al., Icarus 105, 140 (1993), much greater than the upper limit we expect from vertical wind shear, with the largest dispersion seen at equatorial and southern mid-latitudes. Comparison of feature pressures vs. residuals in zonal velocity from the smooth Voyager wind profile also directly reveals the dominance of mechanisms over vertical wind shear in causing dispersion in the zonal winds. Vertical wind shear is not the primary cause of the difference in dispersion and deviation in zonal velocities between features tracked in H-band on 14 July and those tracked in K-band on 16 July. Dispersion in the zonal velocities of features tracked over these short time periods is dominated by one or more mechanisms, other than vertical wind shear, that can cause changes in the dispersion and deviation in the zonal velocities on timescales of hours to days.


قيم البحث

اقرأ أيضاً

The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out fro m the radio to {gamma} -ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP- WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the {gamma} -ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 Rg . We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
We imaged Uranus in the near infrared from 2012 into 2014, using the Keck/NIRC2 camera and Gemini/NIRI camera, both with adaptive optics. We obtained exceptional signal to noise ratios by averaging 8-16 individual exposures in a planet-fixed coordina te system. noise-reduced images revealed many low-contrast discrete features and large scale cloud patterns not seen before, including scalloped waveforms just south of the equator. In all three years numerous small (600-700 km wide) and mainly bright discrete features were seen within the north polar region (north of about 55deg N). Over 850 wind measurements were made, the vast majority of which were in the northern hemisphere. These revealed an extended region of solid body rotation between 62deg N and at least 83deg N, at a rate of 4.08$pm0.015$deg/h westward relative to the planets interior (radio) rotation of 20.88deg/h westward. Near-equatorial speeds measured with high accuracy give different results for waves and small discrete features, with eastward drift rates of 0.4deg/h and 0.1deg/h respectively. The region of polar solid body rotation is a close match to the region of small-scale polar cloud features, suggesting a dynamical relationship. While winds at high southern latitudes (50deg S - 90deg S) are unconstrained by groundbased observations, a recent reanalysis of 1986 Voyager 2 observations by Karkoschka (2015, Icarus 250, 294-307) has revealed an extremely large north-south asymmetry in this region, which might be seasonal. Greatly increased activity was seen in 2014, including the brightest ever feature seen in K images (de Pater et al. 2015, Icarus 252, 121-128). Over the 2012-2014 period we identified six persistent discrete features. Three were tracked for more than two years, two more for more than one year, and one for at least 5 months and continuing.
Imaging and spectroscopy of Neptunes thermal infrared emission is used to assess seasonal changes in Neptunes zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Ou r aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is $pm$5 K at 1 mbar and $pm$3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane). At low and midlatitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 {mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes are associated with the polar vortex (absent in 1989).
We report the Transiting Exoplanet Survey Satellite ($TESS$) detection of a multi-planet system orbiting the $V=10.9$ K0 dwarf TOI 125. We find evidence for up to five planets, with varying confidence. Three high signal-to-noise transit signals corre spond to sub-Neptune-sized planets ($2.76$, $2.79$, and $2.94 R_{oplus}$), and we statistically validate the planetary nature of the two inner planets ($P_b = 4.65$ days, $P_c = 9.15$ days). With only two transits observed, we report the outer object ($P_{.03} = 19.98$ days) as a high signal-to-noise ratio planet candidate. We also detect a candidate transiting super-Earth ($1.4 R_{oplus}$) with an orbital period of only $12.7$ hours and a candidate Neptune-sized planet ($4.2 R_{oplus}$) with a period of $13.28$ days, both at low signal-to-noise. This system is amenable to mass determination via radial velocities and transit timing variations, and provides an opportunity to study planets of similar size while controlling for age and environment. The ratio of orbital periods between TOI 125 b and c ($P_c/P_b = 1.97$) is slightly smaller than an exact 2:1 commensurability and is atypical of multiple planet systems from $Kepler$, which show a preference for period ratios just $wide$ of first-order period ratios. A dynamical analysis refines the allowed parameter space through stability arguments and suggests that, despite the nearly commensurate periods, the system is unlikely to be in resonance.
We report the discovery of a microlensing planet --- MOA-2016-BLG-227Lb --- with a large planet/host mass ratio of $q simeq 9 times 10^{-3}$. This event was located near the $K2$ Campaign 9 field that was observed by a large number of telescopes. As a result, the event was in the microlensing survey area of a number of these telescopes, and this enabled good coverage of the planetary light curve signal. High angular resolution adaptive optics images from the Keck telescope reveal excess flux at the position of the source above the flux of the source star, as indicated by the light curve model. This excess flux could be due to the lens star, but it could also be due to a companion to the source or lens star, or even an unrelated star. We consider all these possibilities in a Bayesian analysis in the context of a standard Galactic model. Our analysis indicates that it is unlikely that a large fraction of the excess flux comes from the lens, unless solar type stars are much more likely to host planets of this mass ratio than lower mass stars. We recommend that a method similar to the one developed in this paper be used for other events with high angular resolution follow-up observations when the follow-up observations are insufficient to measure the lens-source relative proper motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا