ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge-orbital-lattice coupling effects in the dd-excitation profile of one dimensional cuprates

139   0   0.0 ( 0 )
 نشر من قبل James Lee
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify dd-excitations in the quasi-one dimensional compound Ca$_2$Y$_2$Cu$_5$O$_{10}$ using resonant inelastic x-ray scattering. By tuning across the Cu L$_3$-edge, we observe abrupt shifts in the dd-peak positions as a function of incident photon energy. This observation demonstrates orbital-specific coupling of the high-energy excited states of the system to the low-energy degrees of freedom. A Franck-Condon treatment of electron-lattice coupling, consistent with other measurements in this compound, reproduces these shifts, explains the Gaussian lineshapes, and highlights charge-orbital-lattice renormalization in the high energy d-manifold.



قيم البحث

اقرأ أيضاً

High resolution resonant inelastic x-ray scattering has been performed to reveal the role of lattice-coupling in a family of quasi-1D insulating cuprates, Ca$_{2+5x}$Y$_{2-5x}$Cu$_5$O$_{10}$. Site-dependent low energy excitations arising from progres sive emissions of a 70 meV lattice vibrational mode are resolved for the first time, providing a direct measurement of electron-lattice coupling strength. We show that such electron-lattice coupling causes doping-dependent distortions of the Cu-O-Cu bond angle, which sets the intra-chain spin exchange interactions. Our results indicate that the lattice degrees of freedom are fully integrated into the electronic behavior in low dimensional systems.
The collective spin and charge excitations of doped cuprates and their relationship to superconductivity are not yet fully understood, particularly in the case of the charge excitations. Here, we study the doping-dependent dynamical spin and charge s tructure factors of single and multi-orbital models for the one-dimensional corner shared spin-chain cuprates using several numerically exact methods. We find that the singleband Hubbard model can describe the spin and charge excitations of the $pd$-model in the low-energy region, including the particle-hole asymmetry in the spin response. However, our results also reveal that the weight of the interorbital spin excitations between Cu and O orbitals is comparable to the weight of the spin excitations between two Cu orbitals. This finding elucidates the microscopic nature of the spin excitations in the 1D cuprates and sheds light on the spin properties of other oxides. Importantly, we find a particle-hole asymmetry in the orbital-resolved charge excitations, which cannot be described by the singleband Hubbard model and is relevant to resonant inelastic x-ray scattering experiments. Our results imply that the explicit inclusion of the oxygen degrees of freedom may be required to understand experimental observations.
301 - Dheeraj Kumar Singh 2015
Orbital-ordering instability arising due to the intrapocket nesting is investigated for the tight-binding models of pnictides in the presence of orbital-lattice coupling. The incommensurate instabilities with small momentum, which may play an importa nt role in the nematic-ordering transition, vary from model to model besides being more favorable in comparison to the spin-density wave instability in the absence of good interpocket nesting. We also examine the doping dependence of such instabilities. The electron-phonon coupling parameter required to induce them are compared with the first-principle calculations.
98 - S. Nishimoto , T. Shirakawa , 2007
The dynamical density-matrix renormalization group technique is used to calculate spin and charge excitation spectra in the one-dimensional (1D) Hubbard model at quarter filling with nearest-neighbor $t$ and next-nearest-neighbor $t$ hopping integral s. We consider a case where $t$ ($>0$) is much smaller than $t$ ($>0$). We find that the spin and charge excitation spectra come from the two nearly independent $t$-chains and are basically the same as those of the 1D Hubbard (and t-J) chain at quarter filling. However, we find that the hopping integral $t$ plays a crucial role in the short-range spin and charge correlations; i.e., the ferromagnetic spin correlations between electrons on the neighboring sites is enhanced and simultaneously the spin-triplet pairing correlations is induced, of which the consequences are clearly seen in the calculated spin and charge excitation spectra at low energies.
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of thes e nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. Moreover, we demonstrate that this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا