ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3

417   0   0.0 ( 0 )
 نشر من قبل James Lee
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single unit cell films of iron selenide (1UC FeSe) grown on SrTiO3 (STO) substrates have recently shown superconducting energy gaps opening at temperatures close to the boiling point of liquid nitrogen (77 K), a record for iron-based superconductors. Towards understanding why Cooper pairs form at such high temperatures, a primary question to address is the role, if any, of the STO substrate. Here, we report high resolution angle resolved photoemission spectroscopy (ARPES) results which reveal an unexpected and unique characteristic of the 1UC FeSe/STO system: shake-off bands suggesting the presence of bosonic modes, most likely oxygen optical phonons in STO, which couple to the FeSe electrons with only small momentum transfer. Such coupling has the unusual benefit of helping superconductivity in most channels, including those mediated by spin fluctuations. Our calculations suggest such coupling is responsible for raising the superconducting gap opening temperature in 1UC FeSe/STO. This discovery suggests a pathway to engineer high temperature superconductors.



قيم البحث

اقرأ أيضاً

262 - Defa Liu , Xianxin Wu , Fangsen Li 2020
The accurate theoretical description of the underlying electronic structures is essential for understanding the superconducting mechanism of iron-based superconductors. Compared to bulk FeSe, the superconducting single-layer FeSe/SrTiO3 films exhibit a distinct electronic structure consisting of only electron Fermi pockets, due to the formation of a new band gap at the Brillouin zone (BZ) corners and an indirect band gap between the BZ center and corners. Although intensive studies have been carried out, the origin of such a distinct electronic structure and its connection to bulk FeSe remain unclear. Here we report a systematic study on the temperature evolution of the electronic structure in single-layer FeSe/SrTiO3 films by angle-resolved photoemission spectroscopy. A temperature-induced electronic phase transition was clearly observed at 200 K, above which the electronic structure of single-layer FeSe/SrTiO3 films restored to that of bulk FeSe, characterized by the closing of the new band gap and the vanishing of the indirect band gap. Moreover, the interfacial charge transfer effect induced band shift of ~ 60 meV was determined for the first time. These observations not only show the first direct evidence that the electronic structure of single-layer FeSe/SrTiO3 films originates from bulk FeSe through a combined effect of an electronic phase transition and an interfacial charge transfer, but also provide a quantitative basis for theoretical models in describing the electronic structure and understanding the superconducting mechanism in single-layer FeSe/SrTiO3 films.
Interface charge transfer and electron-phonon coupling have been suggested to play a crucial role in the recently discovered high-temperature superconductivity of single unit-cell FeSe films on SrTiO3. However, their origin remains elusive. Here, usi ng ultraviolet photoemission spectroscopy (UPS) and element-sensitive X-ray photoemission spectroscopy (XPS), we identify the strengthened Ti-O bond that contributes to the interface enhanced electron-phonon coupling and unveil the band bending at the FeSe/SrTiO3 interface that leads to the charge transfer from SrTiO3 to FeSe films. We also observe band renormalization that accompanies the onset of superconductivity. Our results not only provide valuable insights into the mechanism of the interface-enhanced superconductivity, but also point out a promising route towards designing novel superconductors in heterostructures with band-bending induced charge transfer and interfacial enhanced electron-phonon coupling.
Charge transfer and electron-phonon coupling (EPC) are proposed to be two important constituents associated with enhanced superconductivity in the single unit cell FeSe films on oxide surfaces. Using high-resolution electron energy loss spectroscopy combined with first-principles calculations, we have explored the lattice dynamics of ultrathin FeSe films grown on SrTiO3. We show that, despite the significant effect from the substrate on the electronic structure and superconductivity of the system, the FeSe phonons in the films are unaffected. The energy dispersion and linewidth associated with the Fe- and Se-derived vibrational modes are thickness- and temperature-independent. Theoretical calculations indicate the crucial role of antiferromagnetic correlation in FeSe to reproduce the experimental phonon dispersion. Importantly, the only detectable change due to the growth of FeSe films is the broadening of the Fuchs-Kliewer (F-K) phonons associated with the lattice vibrations of SrTiO$_3$(001) substrate. If EPC plays any role in the enhancement of film superconductivity, it must be the interfacial coupling between the electrons in FeSe film and the F-K phonons from substrate rather than the phonons of FeSe.
The observation of substantially enhanced superconductivity of single-layer FeSe films on SrTiO3 has stimulated intensive research interest. At present, conclusive experimental data on the corresponding electron-boson interaction is still missing. He re we use inelastic electron scattering spectroscopy and angle resolved photoemission spectroscopy to show that the electrons in these systems are dressed by the strongly polarized lattice distortions of the SrTiO3, and the indispensable non-adiabatic nature of such a coupling leads to the formation of dynamic interfacial polarons. Furthermore, the collective motion of the polarons results in a polaronic plasmon mode, which is unambiguously correlated with the surface phonons of SrTiO3 in the presence of the FeSe films. A microscopic model is developed showing that the interfacial polaron-polaron interaction leads to the superconductivity enhancement.
131 - W. Li , Y. Zhang , J. J. Lee 2015
The intriguing role of nematicity in iron-based superconductors, defined as broken rotational symmetry below a characteristic temperature, is an intensely investigated contemporary subject. Nematicity is closely connected to the structural transition , however, it is highly doubtful that the lattice degree of freedom is responsible for its formation, given the accumulating evidence for the observed large anisotropy. Here we combine molecular beam epitaxy, angle-resolved photoemission spectroscopy and scanning tunneling microscopy together to study the nematicity in multilayer FeSe films on SrTiO3. Our results demonstrate direct connection between electronic anisotropy in momentum space and standing waves in real space at atomic scale. The lifting of orbital degeneracy of dxz/dyz bands gives rise to a pair of Dirac cone structures near the zone corner, which causes energy-independent unidirectional interference fringes, observed in real space as standing waves by scattering electrons off C2 domain walls and Se-defects. On the other hand, the formation of C2 nematic domain walls unexpectedly shows no correlation with lattice strain pattern, which is induced by the lattice mismatch between the film and substrate. Our results establish a clean case that the nematicity is driven by electronic rather than lattice degrees of freedom in FeSe films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا