ﻻ يوجد ملخص باللغة العربية
This work compares the overhead of quantum error correction with concatenated and topological quantum error-correcting codes. To perform a numerical analysis, we use the Quantum Resource Estimator Toolbox (QuRE) that we recently developed. We use QuRE to estimate the number of qubits, quantum gates, and amount of time needed to factor a 1024-bit number on several candidate quantum technologies that differ in their clock speed and reliability. We make several interesting observations. First, topological quantum error correction requires fewer resources when physical gate error rates are high, white concatenated codes have smaller overhead for physical gate error rates below approximately 10E-7. Consequently, we show that different error-correcting codes should be chosen for two of the studied physical quantum technologies - ion traps and superconducting qubits. Second, we observe that the composition of the elementary gate types occurring in a typical logical circuit, a fault-tolerant circuit protected by the surface code, and a fault-tolerant circuit protected by a concatenated code all differ. This also suggests that choosing the most appropriate error correction technique depends on the ability of the future technology to perform specific gates efficiently.
Fault-tolerant quantum error correction is essential for implementing quantum algorithms of significant practical importance. In this work, we propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qu
Fracton topological phases have a large number of materialized symmetries that enforce a rigid structure on their excitations. Remarkably, we find that the symmetries of a quantum error-correcting code based on a fracton phase enable us to design dec
Quantum information can be protected from decoherence and other errors, but only if these errors are sufficiently rare. For quantum computation to become a scalable technology, practical schemes for quantum error correction that can tolerate realisti
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real
We give a review on entanglement purification for bipartite and multipartite quantum states, with the main focus on theoretical work carried out by our group in the last couple of years. We discuss entanglement purification in the context of quantum