ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep 20-GHz survey of the Chandra Deep Field South and SDSS Stripe 82: source catalogue and spectral properties

62   0   0.0 ( 0 )
 نشر من قبل Thomas Franzen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a source catalogue and first results from a deep, blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array, with follow-up observations at 5.5, 9 and 18 GHz. The Australia Telescope 20 GHz (AT20G) deep pilot survey covers a total area of 5 deg^2 in the Chandra Deep Field South and in Stripe 82 of the Sloan Digital Sky Survey. We estimate the survey to be 90% complete above 2.5 mJy. Of the 85 sources detected, 55% have steep spectra (alpha_{1.4}^{20} < -0.5) and 45% have flat or inverted spectra (alpha_{1.4}^{20} >= -0.5). The steep-spectrum sources tend to have single power-law spectra between 1.4 and 18 GHz, while the spectral indices of the flat- or inverted-spectrum sources tend to steepen with frequency. Among the 18 inverted-spectrum (alpha_{1.4}^{20} >= 0.0) sources, 10 have clearly defined peaks in their spectra with alpha_{1.4}^{5.5} > 0.15 and alpha_{9}^{18} < -0.15. On a 3-yr timescale, at least 10 sources varied by more than 15% at 20 GHz, showing that variability is still common at the low flux densities probed by the AT20G-deep pilot survey. We find a strong and puzzling shift in the typical spectral index of the 15-20 GHz source population when combining data from the AT20G, Ninth Cambridge and Tenth Cambridge surveys: there is a shift towards a steeper-spectrum population when going from ~1 Jy to ~5 mJy, which is followed by a shift back towards a flatter-spectrum population below ~5 mJy. The 5-GHz source-count model by Jackson & Wall (1999), which only includes contributions from FRI and FRII sources, and star-forming galaxies, does not reproduce the observed flattening of the flat-spectrum counts below ~5 mJy. It is therefore possible that another population of sources is contributing to this effect.

قيم البحث

اقرأ أيضاً

85 - B. Luo , W. N. Brandt , Y. Q. Xue 2016
We present X-ray source catalogs for the $approx7$ Ms exposure of the Chandra Deep Field-South (CDF-S), which covers a total area of 484.2 arcmin$^2$. Utilizing WAVDETECT for initial source detection and ACIS Extract for photometric extraction and si gnificance assessment, we create a main source catalog containing 1008 sources that are detected in up to three X-ray bands: 0.5-7.0 keV, 0.5-2.0 keV, and 2-7 keV. A supplementary source catalog is also provided including 47 lower-significance sources that have bright ($K_sle23$) near-infrared counterparts. We identify multiwavelength counterparts for 992 (98.4%) of the main-catalog sources, and we collect redshifts for 986 of these sources, including 653 spectroscopic redshifts and 333 photometric redshifts. Based on the X-ray and multiwavelength properties, we identify 711 active galactic nuclei (AGNs) from the main-catalog sources. Compared to the previous $approx4$ Ms CDF-S catalogs, 291 of the main-catalog sources are new detections. We have achieved unprecedented X-ray sensitivity with average flux limits over the central $approx1$ arcmin$^2$ region of $approx1.9times10^{-17}$, $6.4times10^{-18}$, and $2.7times10^{-17}$ erg cm$^{-2}$ s$^{-1}$ in the three X-ray bands, respectively. We provide cumulative number-count measurements observing, for the first time, that normal galaxies start to dominate the X-ray source population at the faintest 0.5-2.0 keV flux levels. The highest X-ray source density reaches $approx50,500$ deg$^{-2}$, and $47%pm4%$ of these sources are AGNs ($approx23,900$ deg$^{-2}$).
74 - Y. Q. Xue , B. Luo , W. N. Brandt 2016
We present improved point-source catalogs for the 2 Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep Field-South (E-CDF-S), implementing a number of recent improvements in Chandra source-cataloging methodology. For the CDF-N/E -CDF-S, we provide a main catalog that contains 683/1003 X-ray sources detected with wavdetect at a false-positive probability threshold of $10^{-5}$ that also satisfy a binomial-probability source-selection criterion of $P<0.004$/$P<0.002$. Such an approach maximizes the number of reliable sources detected: a total of 196/275 main-catalog sources are new compared to the Alexander et al. (2003) CDF-N/Lehmer et al. (2005) E-CDF-S main catalogs. We also provide CDF-N/E-CDF-S supplementary catalogs that consist of 72/56 sources detected at the same wavdetect threshold and having $P$ of $0.004-0.1$/$0.002-0.1$ and $K_sle22.9/K_sle22.3$ mag counterparts. For all $approx1800$ CDF-N and E-CDF-S sources, including the $approx500$ newly detected ones (these being generally fainter and more obscured), we determine X-ray source positions utilizing centroid and matched-filter techniques; we also provide multiwavelength identifications, apparent magnitudes of counterparts, spectroscopic and/or photometric redshifts, basic source classifications, and estimates of observed AGN and galaxy source densities around respective field centers. Simulations show that both the CDF-N and E-CDF-S main catalogs are highly reliable and reasonably complete. Background and sensitivity analyses indicate that the on-axis mean flux limits reached represent a factor of $approx1.5-2.0$ improvement over the previous CDF-N and E-CDF-S limits. We make our data products publicly available.
(abridged) The XMM-Newton survey in the Chandra Deep Field South (XMM-CDFS) aims at detecting and studying the spectral properties of a significant number of obscured and Compton-thick AGN. The large effective area of XMMin the 2--10 and 5--10 keV ba nds, coupled with a 3.45 Ms nominal exposure time, allows us to build clean samples in both bands, and makes the XMM-CDFS the deepest XMM survey currently published in the 5--10 keV band. The large multi-wavelength and spectroscopic coverage of the CDFS area allows for an immediate and abundant scientific return. We present the data reduction of the XMM-CDFS observations, the method for source detection in the 2--10 and 5--10keV bands, and the resulting catalogues. A number of 339 and 137 sources are listed in the above bands with flux limits of 6.6e-16 and 9.5e-16 erg/s/cm^2, respectively. The flux limits at 50% of the maximum sky coverage are 1.8e-15 and 4.0e-15 erg/s/cm^2, respectively. The catalogues have been cross-correlated with the Chandra ones: 315 and 130 identifications have been found with a likelihood-ratio method, respectively. A number of 15 new sources, previously undetected by Chandra, is found; 5 of them lie in the 4 Ms area. Redshifts, either spectroscopic or photometric, are available for ~92% of the sources. The number counts in both bands are presented and compared to other works. The survey coverage has been calculated with the help of two extensive sets of simulations, one set per band. The simulations have been produced with a newly-developed simulator, written with the aim of the most careful reproduction of the background spatial properties. We present a detailed decomposition of the XMM background into its components: cosmic, particle, and residual soft protons.
81 - Y.Q. Xue , B. Luo , W.N. Brandt 2011
[abridged] We present point-source catalogs for the 4Ms Chandra Deep Field-South (CDF-S), which is the deepest Chandra survey to date and covers an area of 464.5 arcmin^2. We provide a main source catalog, which contains 740 X-ray point sources that are detected with wavdetect at a false-positive probability threshold of 1E-5 and also satisfy a binomial-probability source-selection criterion of P<0.004; this approach is designed to maximize the number of reliable sources detected. A total of 300 main-catalog sources are new compared to the previous 2Ms CDF-S main-catalog sources. We also provide a supplementary catalog, which consists of 36 sources that are detected with wavdetect at 1E-5, satisfy 0.004< P<0.1, and have an optical counterpart with R<24. Multiwavelength identifications, basic optical/infrared/radio photometry, and spectroscopic/photometric redshifts are provided for the X-ray sources. Basic analyses of the X-ray and multiwavelength properties of the sources indicate that >75% of the main-catalog sources are AGNs; of the 300 new main-catalog sources, about 35% are likely normal and starburst galaxies, reflecting the rise of normal and starburst galaxies at the very faint flux levels uniquely accessible to the 4Ms CDF-S. Near the center of the 4Ms CDF-S, the observed AGN and galaxy source densities have reached ~9800 and 6900 per square degree, respectively. The 4 Ms CDF-S reaches on-axis flux limits of ~9.1E-18 and 5.5E-17 erg/cm^2/s for the soft and hard bands, respectively. An increase in the CDF-S exposure by a factor of ~2-2.5 would provide further significant gains and probe key unexplored discovery space.
63 - Tara Murphy 2009
We present the full source catalogue from the Australia Telescope 20 GHz (AT20G) Survey. The AT20G is a blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array (ATCA) from 2004 to 2008, and covers the whole sky south of de clination 0 deg. The AT20G source catalogue presented here is an order of magnitude larger than any previous catalogue of high-frequency radio sources, and includes 5890 sources above a 20 GHz flux-density limit of 40 mJy. All AT20G sources have total intensity and polarisation measured at 20 GHz, and most sources south of declination -15 deg also have near-simultaneous flux-density measurements at 5 and 8 GHz. A total of 1559 sources were detected in polarised total intensity at one or more of the three frequencies. We detect a small but significant population of non-thermal sources that are either undetected or have only weak detections in low-frequency catalogues. We introduce the term Ultra-Inverted Spectrum (UIS) to describe these radio sources, which have a spectral index alpha(5, 20) > +0.7 and which constitute roughly 1.2 per cent of the AT20G sample. The 20 GHz flux densities measured for the strongest AT20G sources are in excellent agreement with the WMAP 5-year source catalogue of Wright et al. (2009), and we find that the WMAP source catalogue is close to complete for sources stronger than 1.5 Jy at 23 GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا