ترغب بنشر مسار تعليمي؟ اضغط هنا

A new CVD Diamond Mosaic-Detector for (n,$alpha$) Cross-Section Measurements at the n_TOF Experiment at CERN

207   0   0.0 ( 0 )
 نشر من قبل Christina Weiss
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At the n_TOF experiment at CERN a dedicated single-crystal chemical vapor deposition (sCVD) Diamond Mosaic-Detector has been developed for (n,$alpha$) cross-section measurements. The detector, characterized by an excellent time and energy resolution, consists of an array of 9 sCVD diamond diodes. The detector has been characterized and a cross-section measurement has been performed for the $^{59}$Ni(n,$alpha$)$^{56}$Fe reaction in 2012. The characteristics of the detector, its performance and the promising preliminary results of the experiment are presented.


قيم البحث

اقرأ أيضاً

Direct measurements of reaction cross-sections at astrophysical energies often require the use of solid targets able to withstand high ion beam currents for extended periods of time. Thus, monitoring target thickness, isotopic composition, and target stoichiometry during data taking is critical to account for possible target modifications and to reduce uncertainties in the final cross-section results. A common technique used for these purposes is the Nuclear Resonant Reaction Analysis (NRRA), which however requires that a narrow resonance be available inside the dynamic range of the accelerator used. In cases when this is not possible, as for example the 13C(alpha,n)16O reaction recently studied at low energies at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Italy, alternative approaches must be found. Here, we present a new application of the shape analysis of primary gamma rays emitted by the 13C(p,g)14N radiative capture reaction. This approach was used to monitor 13C target degradation {em in situ} during the 13C(alpha,n)16O data taking campaign. The results obtained are in agreement with evaluations subsequently performed at Atomki (Hungary) using the NRRA method. A preliminary application for the extraction of the 13C(alpha,n)16O reaction cross-section at one beam energy is also reported.
153 - K. Marton , G. Kiss , A. Laszlo 2014
The NA61 Experiment at CERN SPS is a large acceptance hadron spectrometer, aimed to studying of hadron-hadron, hadron-nucleus, and nucleus-nucleus interactions in a fixed target environment. The present paper discusses the construction and performanc e of the Low Momentum Particle Detector (LMPD), a small time projection chamber unit which has been added to the NA61 setup in 2012. The LMPD considerably extends the detector acceptance towards the backward region, surrounding the target in hadron-nucleus interactions. The LMPD features simultaneous range and ionization measurements, which allows for particle identification and momentum measurement in the 0.1-0.25 GeV/c momentum range for protons. The possibility of Z=1 particle identification in this range is directly demonstrated.
The newly built second experimental area EAR2 of the n_TOF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experiment al procedure for the determination of the cross-section of the 7Be(n,{alpha}) reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge 7Be {gamma}-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutron beam.
The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.
The P326 experiment at the CERN SPS has been proposed with the purpose of measuring the branching ratio for the decay K^+ to pi^+ u bar{ u} to within 10%. The photon veto system must provide a rejection factor of 10^8 for pi^0 decays. We have explor ed two designs for the large-angle veto detectors, one based on scintillating tiles and the other using scintillating fibers. We have constructed a prototype module based on the fiber solution and evaluated its performance using low-energy electron beams from the Frascati Beam-Test Facility. For comparison, we have also tested a tile prototype constructed for the CKM experiment, as well as lead-glass modules from the OPAL electromagnetic barrel calorimeter. We present results on the linearity, energy resolution, and time resolution obtained with the fiber prototype, and compare the detection efficiency for electrons obtained with all three instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا