ترغب بنشر مسار تعليمي؟ اضغط هنا

Remote Life Detection Criteria, Habitable Zone Boundaries, and the Frequency of Earthlike Planets around M and Late-K Stars

152   0   0.0 ( 0 )
 نشر من قبل Ravi Kumar Kopparapu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planets atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. Historically, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, Dune planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, Seff, the recently recalculated HZ boundaries are: recent Venus-1.78, runaway greenhouse-1.04, moist greenhouse-1.01, maximum greenhouse-0.35, early Mars-0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late-K and M stars observed by Kepler is in the range of 0.4-0.5.



قيم البحث

اقرأ أيضاً

We use a one-dimensional (1-D) cloud-free climate model to estimate habitable zone (HZ) boundaries for terrestrial planets of masses 0.1 M$_{E}$ and 5 M$_{E}$ around circumbinary stars of various spectral type combinations. Specifically, we consider binary systems with host spectral types F-F, F-G, F-K, F-M, G-G, G-K, G-M, K-K, K-M and M-M. Scaling the background N2 atmospheric pressure with the radius of the planet, we find that the inner edge of the HZ moves inwards towards the star for 5ME compared to 0.1ME planets for all spectral types. This is because the water-vapor column depth is smaller for larger planets and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. The outer edge of the HZ changes little due to competing effects of the albedo and greenhouse effect. While these results are broadly consistent with the trend of single star HZ results for different mass planets, there are significant differences between single star and binary star systems for the inner edge of the HZ. Interesting combinations of stellar pairs from our 1-D model results can be used to explore for in-depth climate studies with 3-D climate models. We identify a common HZ stellar flux domain for all circumbinary spectral types
We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent inste llation flux, which allows us to track HZ planets. We define $eta_oplus$ as the HZ occurrence of planets with radius between 0.5 and 1.5 $R_oplus$ orbiting stars with effective temperatures between 4800 K and 6300 K. We find that $eta_oplus$ for the conservative HZ is between $0.37^{+0.48}_{-0.21}$ (errors reflect 68% credible intervals) and $0.60^{+0.90}_{-0.36}$ planets per star, while the optimistic HZ occurrence is between $0.58^{+0.73}_{-0.33}$ and $0.88^{+1.28}_{-0.51}$ planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates using both a Poisson likelihood Bayesian analysis and Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with $95%$ confidence that, on average, the nearest HZ planet around G and K dwarfs is about 6 pc away, and there are about 4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun.
349 - Michael Shao 2009
Astrometry can detect rocky planets in a broad range of masses and orbital distances and measure their masses and three-dimensional orbital parameters, including eccentricity and inclination, to provide the properties of terrestrial planets. The mass es of both the new planets and the known gas giants can be measured unambiguously, allowing a direct calculation of the gravitational interactions, both past and future. Such dynamical interactions inform theories of the formation and evolution of planetary systems, including Earth-like planets. Astrometry is the only technique technologically ready to detect planets of Earth mass in the habitable zone (HZ) around solar-type stars within 20 pc. These Earth analogs are close enough for follow-up observations to characterize the planets by infrared imaging and spectroscopy with planned future missions such as the James Webb Space Telescope (JWST) and the Terrestrial Planet Finder/Darwin. Employing a demonstrated astrometric precision of 1 microarcsecond and a noise floor under 0.1 micro-arcseconds, SIM Lite can make multiple astrometric measurements of the nearest 60 F-, G-, and K-type stars during a five-year mission. SIM Lite directly tests theories of rocky planet formation and evolution around Sun-like stars and identifies the nearest potentially habitable planets for later spaceborne imaging, e.g., with Terrestrial Planet Finder and Darwin. SIM was endorsed by the two recent Decadal Surveys and it meets the highest-priority goal of the 2008 AAAC Exoplanet Task Force.
In the search for life in the cosmos, NASAs Transiting Exoplanet Survey Satellite (TESS) mission has already monitored about 74% of the sky for transiting extrasolar planets, including potentially habitable worlds. However, TESS only observed a fract ion of the stars long enough to be able to find planets like Earth. We use the primary mission data - the first two years of observations - and identify 4,239 stars within 210pc that TESS observed long enough to see 3 transits of an exoplanet that receives similar irradiation to Earth: 738 of these stars are located within 30pc. We provide reliable stellar parameters from the TESS Input Catalog that incorporates Gaia DR2 and also calculate the transit depth and radial velocity semi-amplitude for an Earth-analog planet. Of the 4,239 stars in the Revised TESS HZ Catalog, 9 are known exoplanet hosts - GJ 1061, GJ 1132, GJ 3512, GJ 685, Kepler-42, LHS 1815, L98-59, RR Cae, TOI 700 - around which TESS could identify additional Earth-like planetary companions. 37 additional stars host yet unconfirmed TESS Objects of Interest: three of these orbit in the habitable zone - TOI 203, TOI 715, and TOI 2298. For a subset of 614 of the 4,239 stars, TESS has observed the star long enough to be able to observe planets throughout the full temperate, habitable zone out to the equivalent of Mars orbit. Thus, the Revised TESS Habitable Zone Catalog provides a tool for observers to prioritize stars for follow-up observation to discover life in the cosmos. These stars are the best path towards the discovery of habitable planets using the TESS mission data.
The search for life in the universe is currently focused on Earth-analog planets. However, we should be prepared to find a diversity of terrestrial exoplanets not only in terms of host star but also in terms of surface environment. Simulated high-res olution spectra of habitable planets covering a wide parameter space are essential in training retrieval tools, optimizing observing strategies, and interpreting upcoming observations. Ground-based extremely large telescopes like ELT, GMT, and TMT; and future space-based mission concepts like Origins, HabEx, and LUVOIR are designed to have the capability of characterizing a variety of potentially habitable worlds. Some of these telescopes will use high precision radial velocity techniques to obtain the required high-resolution spectra ($Rapprox100,000$) needed to characterize potentially habitable exoplanets. Here we present a database of high-resolution (0.01 cm$^{-1}$) reflection and emission spectra for simulated exoplanets with a wide range of surfaces, receiving similar irradiation as Earth around 12 different host stars from F0 to K7. Depending on surface type and host star, we show differences in spectral feature strength as well as overall reflectance, emission, and star to planet contrast ratio of terrestrial planets in the Habitable zone of their host stars. Accounting for the wavelength-dependent interaction of the stellar flux and the surface will help identify the best targets for upcoming spectral observations in the visible and infrared. All of our spectra and model profiles are available online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا