ترغب بنشر مسار تعليمي؟ اضغط هنا

Pinning force scaling analysis of Fe-based high-Tc superconductors

122   0   0.0 ( 0 )
 نشر من قبل Michael Koblischka
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pinning force data, Fp, of a variety of Fe-based high-Tc superconductors (11-, 111-, 122- and 1111-type) were analyzed by means of a scaling approach based on own experimental data and an extensive collection of literature data. The literature data were mostly replotted, but also converted from critical current measurements together with data for the irreversibility line when available from the same authors. Using the scaling approaches of Dew-Hughes and Kramer, we determined the scaling behavior and the best fits to the theory. The data of most experiments analyzed show a good scaling behavior at high temperatures when plotting the normalized pinning force Fp/Fp,max versus the irreversibility field, Hirr. The resulting peak positions, h0, were found at 0.3 for the 11-type materials, at 0.48 for the 111-type materials, between 0.32 and 0.5 for the 1111-type materials and between 0.25 and 0.71 for the 122-type materials. This high peak position ensures a good performance of the materials in high applied magnetic fields and is, therefore, a very promising result concerning the possible applications of the Fe-based high-Tc superconductors.



قيم البحث

اقرأ أيضاً

126 - Yunkyu Bang 2016
Motivated by the recent experiment of the non-BCS scaling relation of the condensation energy $Delta CE$ vs. $T_c$ ($Delta CE sim T_c ^{beta}, betaapprox 3.5$) [PRB 89 140503 (2014)] for the Fe-based superconductors, we studied the CE and $T_c$ of th e multiband BCS superconductors. We showed that the experimentally observed anomalous scaling relation $Delta CE sim T_c ^{3.5}$ is well reproduced by the two-band BCS superconductor paired by a dominant interband interaction ($V_{inter} > V_{intra}$). Our result implies that this seemingly non-BCS-like scaling behavior, on the contrary to the common expectation, is in fact a strong experimental evidence that the pairing mechanism of the Fe-based superconductors is genuinely a BCS mechanism, meaning that the Cooper pairs are formed by the itinerant carriers glued by a pairing interaction.
We review neutron scattering investigations of the crystal structures, magnetic structures, and spin dynamics of the iron-based RFe(As,P)O (R=La, Ce, Pr, Nd), (Ba,Sr,Ca)Fe2As2, and Fe1+x(Te-Se) systems. On cooling from room temperature all the undope d materials exhibit universal behavior, where a tetragonal-to-orthorhombic/monoclinic structural transition occurs, below which the systems become antiferromagnets. For the first two classes of materials the magnetic structure within the a-b plane consists of chains of parallel Fe spins that are coupled antiferromagnetically in the orthogonal direction, with an ordered moment typically less than one Bohr magneton. Hence these are itinerant electron magnets, with a spin structure that is consistent with Fermi-surface nesting and a very energetic spin wave bandwidth ~0.2 eV. With doping, the structural and magnetic transitions are suppressed in favor of superconductivity. Magnetic correlations are observed in the superconducting regime, with a magnetic resonance that follows the superconducting order parameter just like the cuprates. The rare-earth moments order antiferromagnetically at low T like conventional magnetic-superconductors. Pressure in CaFe2As2 transforms the system from a magnetically ordered orthorhombic material to a collapsed non-magnetic tetragonal system. Tetragonal Fe1+xTe transforms to a low T monoclinic structure at small x that changes to orthorhombic at larger x, which is accompanied by a crossover from commensurate to incommensurate magnetic order. Se doping suppresses the magnetic order.
We report on successful synthesis under high pressure of a series of polycrystalline GdFeAs O_{1-x}F_x high-Tc superconductors with different oxygen deficiency x=0.12 - 0.16 and also with no fluorine. We have found that the high-pressure synthesis te chnique is crucial for obtaining almost single-phase superconducting materials: by synthesizing the same compounds with no pressure in ampoules we obtained non-superconducting materials with an admixture of incidental phases. Critical temperature for all the materials was in the range 40 to 53K. The temperature derivative of the critical field dHc2/dT is remarkably high, indicating potentially high value of the second critical field Hc2 ~ 130T.
A quarter of a century after their discovery the mechanism that pairs carriers in the cuprate high-Tc superconductors (HTS) still remains uncertain. Despite this the general consensus is that it is probably magnetic in origin [1] so that the energy s cale for the pairing boson is governed by J, the antiferromagnetic exchange interaction. Recent studies using resonant inelastic X-ray scattering strongly support these ideas [2]. Here as a further test we vary J (as measured by two-magnon Raman scattering) by more than 60% by changing ion sizes in the model HTS system LnA2Cu3O7-{delta} where A=(Ba,Sr) and Ln=(La, Nd, Sm, Eu, Gd, Dy, Yb, Lu). Such changes are often referred to as internal pressure. Surprisingly, we find Tcmax anticorrelates with J where internal pressure is the implicit variable. This is the opposite to the effect of external pressure and suggests that J is not the dominant energy scale governing Tcmax.
143 - Louis Taillefer 2009
The recent observation of quantum oscillations in underdoped high-Tc superconductors, combined with their negative Hall coefficient at low temperature, reveals that the Fermi surface of hole-doped cuprates includes a small electron pocket. This stron gly suggests that the large hole Fermi surface characteristic of the overdoped regime undergoes a reconstruction caused by the onset of some order which breaks translational symmetry. Here we consider the possibility that this order is stripe order, a form of charge / spin modulation observed most clearly in materials like Eu-doped and Nd-doped LSCO. In these materials, the onset of stripe order is indeed the cause of Fermi-surface reconstruction. We identify the critical doping where this reconstruction occurs and show that the temperature dependence of transport coefficients at that doping is typical of metals at a quantum critical point. We discuss how the pseudogap phase may be a fluctuating precursor of the stripe-ordered phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا