ﻻ يوجد ملخص باللغة العربية
Using properties of skew-Hamiltonian matrices and classic connectedness results, we prove that the moduli space $M_{ort}^0(r,n)$ of stable rank $r$ orthogonal vector bundles on $mathbb{P}^2$, with Chern classes $(c_1,c_2)=(0,n)$, and trivial splitting on the general line, is smooth irreducible of dimension $(r-2)n-{r choose 2}$ for specific values of $r$ and $n$.
We investigate orthogonal and symplectic bundles with parabolic structure, over a curve.
We apply the method of skew-orthogonal polynomials (SOP) in the complex plane to asymmetric random matrices with real elements, belonging to two different classes. Explicit integral representations valid for arbitrary weight functions are derived for
This paper studies spaces of generalized theta functions for odd orthogonal bundles with nontrivial Stiefel-Whitney class and the associated space of twisted spin bundles. In particular, we prove a Verlinde type formula and a dimension equality that
Let $C$ be an algebraic curve of genus $g$ and $L$ a line bundle over $C$. Let $mathcal{MS}_C(n,L)$ and $mathcal{MO}_C(n,L)$ be the moduli spaces of $L$-valued symplectic and orthogonal bundles respectively, over $C$ of rank $n$. We construct rationa
Jacobis method is a well-known algorithm in linear algebra to diagonalize symmetric matrices by successive elementary rotations. We report about the generalization of these elementary rotations towards canonical transformations acting in Hamiltonian