ترغب بنشر مسار تعليمي؟ اضغط هنا

GRASIL-3D: an Implemention of Dust Effects in the SEDs of Simulated Galaxies

116   0   0.0 ( 0 )
 نشر من قبل Rosa Dom\\'inguez-Tenreiro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new model for the spectral energy distribution of galaxies, GRASIL-3D, which includes a careful modelling of the dust component of the interstellar medium. GRASIL-3D is an entirely new model based on the formalism of an existing and widely applied spectrophotometric model, GRASIL, but specifically designed to be interfaced with galaxies with any arbitrarily given geometry, such as galaxies calculated by theoretical hydrodynamical galaxy formation codes. GRASIL-3D is designed to separately treat radiative transfer in molecular clouds and in the diffuse cirrus component. The code has a general applicability to the outputs of simulated galaxies, either from Lagrangian or Eulerian hydrodynamic codes. As an application, the new model has been interfaced to the P-DEVA and GASOLINE smoothed-particle hydrodynamic codes, and has been used to calculate the spectral energy distribution for a variety of simulated galaxies from UV to sub-millimeter wavelengths, whose comparison with observational data gives encouraging results. In addition, GRASIL-3D allows 2D images of such galaxies to be obtained, at several angles and in different bands.

قيم البحث

اقرأ أيضاً

By means of the updated PARSEC database of evolutionary tracks of massive stars, we compute the integrated stellar light, the ionizing photon budget and the supernova rates of young simple stellar populations (SSPs), for different metallicities and I MF upper mass limits. Using CLOUDY we compute and include in the SSP spectra the neb- ular emission contribution. We also revisit the thermal and non-thermal radio emission contribution from young stars. Using GRASIL we can thus predict the panchromatic spectrum and the main recombination lines of any type of star-forming galaxy, including the effects of dust absorption and re-emission. We check the new models against the spectral energy distributions (SEDs) of selected well-observed nearby galaxies. From the best-fit models we obtain a consistent set of star formation rate (SFR) calibrations at wavelengths ranging from ultraviolet (UV) to radio. We also provide analytical calibrations that take into account the dependence on metallcity and IMF upper mass limit of the SSPs. We show that the latter limit can be well constrained by combining information from the observed far infrared, 24 {mu}m, 33 GHz and H{alpha} luminosities. Another interesting property derived from the fits is that, while in a normal galaxy the attenuation in the lines is significantly higher than that in the nearby continuum, in individual star bursting regions they are similar, supporting the notion that this effect is due to an age selective extinction. Since in these conditions the Balmer decrement method may not be accurate, we provide relations to estimate the attenuation from the observed 24 {mu}m or 33 GHz fluxes. These relations can be useful for the analysis of young high redshift galaxies.
We use deep Herschel PACS and SPIRE observations in GOODSS, GOODSN and COSMOS to estimate the average dust mass (Mdust) of galaxies on a redshift-stellar mass (Mstar)-SFR grid. We study the scaling relations between Mdust, Mstar and SFR at z<=2.5. No clear evolution of Mdust is observed at fixed SFR and Mstar. We find a tight correlation between SFR and Mdust, likely a consequence of the Schmidt-Kennicutt (S-K) law. The Mstar-Mdust correlation observed by previous works flattens or sometimes disappears when fixing the SFR. Most of it likely derives from the combination of the Mdust-SFR and Mstar-SFR correlations. We then investigate the gas content as inferred by converting Mdust by assuming that the dust/gas ratio scales linearly with the gas metallicity. All galaxies in the sample follow, within uncertainties, the same SFR-Mgas relation (integrated S-K law), which broadly agrees with CO-based results for the bulk of the population, despite the completely different approaches. The majority of galaxies at z~2 form stars with an efficiency (SFE=SFR/Mgas) ~5 times higher than at z~0. It is not clear what fraction of such variation is an intrinsic redshift evolution and what fraction arises from selection effects. The gas fraction (fgas) decreases with Mstar and increases with SFR, and does not evolve with z at fixed Mstar and SFR. We explain these trends by introducing a universal relation between fgas, Mstar and SFR, non-evolving out to z~2.5. Galaxies move across this relation as their gas content evolves in time. We use the 3D fundamental fgas-Mstar-SFR relation and the redshift evolution of the Main Sequence to estimate the evolution of fgas in the average population of galaxies as a function of z and Mstar, and we find evidence a downsizing scenario.
We present a detailed analysis of the local evolution of 206 Lagrangian Volumes (LVs) selected at high redshift around galaxy seeds, identified in a large-volume $Lambda$ cold dark matter ($Lambda$CDM) hydrodynamical simulation. The LVs have a mass r ange of $1 - 1500 times 10^{10} M_odot$. We follow the dynamical evolution of the density field inside these initially spherical LVs from $z=10$ up to $z_{rm low} = 0.05$, witnessing highly non-linear, anisotropic mass rearrangements within them, leading to the emergence of the local cosmic web (CW). These mass arrangements have been analysed in terms of the reduced inertia tensor $I_{ij}^r$, focusing on the evolution of the principal axes of inertia and their corresponding eigendirections, and paying particular attention to the times when the evolution of these two structural elements declines. In addition, mass and component effects along this process have also been investigated. We have found that deformations are led by dark matter dynamics and they transform most of the initially spherical LVs into prolate shapes, i.e. filamentary structures. An analysis of the individual freezing-out time distributions for shapes and eigendirections shows that first most of the LVs fix their three axes of symmetry (like a skeleton) early on, while accretion flows towards them still continue. Very remarkably, we have found that more massive LVs fix their skeleton earlier on than less massive ones. We briefly discuss the astrophysical implications our findings could have, including the galaxy mass-morphology relation and the effects on the galaxy-galaxy merger parameter space, among others.
We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of UV, IR and HI surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal extinction, derived from the TIR-to-FUV luminosity ratio, decreases with radius, and is larger in Sb-Sbc galaxies. The TIR-to-FUV ratio correlates with the UV spectral slope beta, following a sequence shifted to redder UV colors with respect to that of starbursts. The star formation history (SFH) is identified as the main driver of this departure. We have also derived radial profiles of the total dust mass surface density, the fraction of the dust mass contributed by PAHs, the fraction of the dust mass heated by very intense starlight and the intensity of the radiation field heating the grains. The dust profiles are exponential, their radial scale-length being constant from Sb to Sd galaxies (only ~10% larger than the stellar scale-length). Many S0/a-Sab galaxies have central depressions in their dust radial distributions. The PAH abundance increases with metallicity for 12+log(O/H)<9, and at larger metallicities the trend flattens and even reverses, with the SFH being a plausible underlying driver for this behavior. The dust-to-gas ratio is also well correlated with metallicity and therefore decreases with galactocentric radius.
Using hydrodynamic simulations, we investigate the physical properties of gaseous substructures in barred galaxies and their relationships with the bar strength. The gaseous medium is assumed to be isothermal and unmagnetized. The bar potential is mo deled as a Ferrers prolate with index n. To explore situations with differing bar strength, we vary the bar mass fbar relative to the spheroidal component as well as its aspect ratio. We derive expressions as functions of fbar and the aspect ratio for the bar strength Qb and the radius r(Qb) where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have fbar=0.25-0.5 and n<1. Dust lanes approximately follow one of x1-orbits and tend to be more straight under a stronger and more elongated bar, but are insensitive to the presence of self-gravity. A nuclear ring of a conventional x2 type forms only when the bar is not so massive or elongated. The radius of an x2-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Qb, and slightly larger when self-gravity is included. This evidences that the ring position is not determined by the resonance but by the amount of angular momentum loss at dust-lane shocks. Nuclear spirals exist only when the ring is of the x2-type and sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out as being tightly-wound and weak, and then due to the nonlinear effect unwind and become stronger until turning into shocks, with an unwinding rate higher for larger Qb. The mass inflow rate to the galaxy center is found to be less than 0.01 Msun/yr for models with Qb<0.2, while becoming larger than 0.1 Msun/yr when Qb>0.2 and self-gravity is included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا